Selfadhesivity in Gaussian conditional independence structures

Tobias Boege

Max-Planck Institute for Mathematics in the Sciences, Leipzig

WUPES '22 Kutná Hora, 3 June 2022

Adhesive extensions of entropy vectors

- ▶ Let $(\xi_i : i \in N)$ be a vector of jointly distributed discrete random variables.
- ▶ We associate its entropy vector $h_{\xi}(I) := H(\xi_I)$ where $\xi_I = (\xi_i : i \in I)$ is a marginal distribution and $H(\xi) := -\sum_x p_{\xi}(x) \log p_{\xi}(x)$ is the Shannon entropy.
- lacktriangle The vectors h_{ξ} are polymatroids and satisfy many, many other properties ...

Theorem (Matúš (2007))

Every pair of random vectors $(\xi_i : i \in N)$ and $(\eta_i : i \in M)$ with $L = N \cap M$ has an adhesive extension over L, i.e., there exists a random vector $(\zeta_i : i \in NM)$ such that:

- $ightharpoonup \zeta_N = \xi$ and $\zeta_M = \eta$,
- $\blacktriangleright \ [\zeta_N \perp \!\!\!\perp \zeta_M \mid \zeta_L].$

Selfadhesivity

- ▶ Fix a discrete random vector ξ and a subset $L \subseteq N$.
- ▶ Choose a set M with |M| = |N| and a bijection $\pi: N \to M$ which fixes L pointwise. The pair (M,π) is an L-copy of N.
- \blacktriangleright ξ is selfadhesive at L if there exists an adhesive extension ζ of ξ and $\pi(\xi)$.
- \blacktriangleright ξ is selfadhesive if it is selfadhesive at every L.

Corollary (Matúš (2007))

Entropy vectors are selfadhesive.

Refresher on Gaussian conditional independence

- ▶ A joint (regular!) Gaussian distribution of N random variables $(\xi_i : i \in N)$ is specified by its mean vector $\mu \in \mathbb{R}^N$ and its covariance matrix $\Sigma \in PD_N$.
- ▶ The marginal ξ_I has covariance $\Sigma_I := \Sigma_{I,I}$, which is a principal submatrix.
- ▶ The conditional $\xi_I \mid \xi_{I^c} = x$ has covariance $\Sigma^{I^c} := \Sigma_I \Sigma_{I,I^c} \Sigma_{I^c}^{-1} \Sigma_{I^c,I}$, which is the Schur complement of I^c in Σ .
- ▶ Marginal independence $[\xi_I \perp \!\!\! \perp \xi_J]$ is equivalent to $\Sigma_{I,J} = 0$.
- ▶ Conditional independence $[\xi_I \perp \!\!\! \perp \xi_J \mid \xi_K]$ is equivalent to $\operatorname{rk} \Sigma_{IK,JK} = |K|$.

Properties of CI structures

- ▶ The set $\llbracket \Sigma \rrbracket := \{ [\xi_I \perp \!\!\! \perp \xi_J \mid \xi_K] : \operatorname{rk} \Sigma_{IK,JK} = |K| \}$ is the CI structure of the Gaussian distribution(s) ξ with covariance matrix Σ .
- ightharpoonup A property of CI structures is a vector p which assigns to every finite set N a set of CI structures.
 - lacktriangle The semigraphoids $\mathfrak{sg}(N)$ on N form a property.
 - ightharpoonup $\mathfrak{g}^+(N) \coloneqq \{ [\![\Sigma]\!] : \Sigma \in \mathrm{PD}_N \}$ form the property of being Gaussian.

Properties are ordered by inclusion: $\mathfrak{g}^+ \leq \mathfrak{sg}$.

"Every Gaussian distribution induces a semigraphoid."

Adhesive extensions of covariance matrices

Theorem

Every pair of positive definite matrices $\Sigma \in PD_N$ and $\Delta \in PD_M$ with $L = N \cap M$ has an adhesive extension over L, i.e., there exists a $\Phi \in PD_{NM}$ such that:

- $lackbox{}\Phi_N=\Sigma$ and $\Phi_M=\Delta$,
- $\blacktriangleright \ [N \perp\!\!\!\perp M \mid L] \in [\![\Phi]\!].$

Proof.

Easy exercise in linear algebra!

Corollary

The multiinformation vectors of regular Gaussian distributions are selfadhesive.

Structural selfadhesivity

If all Gaussians have some property $\mathfrak p$ and are selfadhesive, then this reveals more structure than $\mathfrak p$ alone.

Let $\mathfrak p$ be a property of CI structures. Its selfadhesion is the property $\mathfrak p^{\rm sa}$ defined as follows. $\mathcal L \in \mathfrak p^{\rm sa}(N)$ if and only if for every $L \subseteq N$ and an L-copy (M,π) of N there exists $\overline{\mathcal L} \in \mathfrak p(NM)$ with:

- $lackbox \overline{\mathcal L}|_N = \mathcal L \text{ and } \overline{\mathcal L}|_M = \pi(\mathcal L),$
- $\blacktriangleright \ [N \perp \!\!\!\perp M \mid L] \in \overline{\mathcal{L}}.$

Lemma

 \mathfrak{g}^+ is a fixed point of \cdot sa. Hence if $\mathfrak{g}^+ \leq \mathfrak{p}$, then also $\mathfrak{g}^+ \leq \mathfrak{p}$ sa $\leq \mathfrak{p}$.

Computations

Apply selfadhesion to strengthen known necessary properties of Gaussianity:

► Structural semigraphoids \mathfrak{sg}_* : Studený (1994):

Computation

There are $508\,817$ gaussoids on n=5 random variables modulo isomorphy. Of these $336\,838$ satisfy \mathfrak{sg}_* and $335\,047$ of them satisfy $\mathfrak{sg}_*^{\mathsf{sa}}$.

▶ Orientable gaussoids o: Boege–D'Alì–Kahle–Sturmfels (2019):

Computation

All orientable gaussoids on n=4 are Gaussian. Precisely $175\,215$ gaussoids satisfy o and $168\,010$ satisfy o^{sa}.

Computations

Computation

The properties $\mathfrak{sg}_* \wedge \mathfrak{o}$ and $\mathfrak{sg}_*^{\mathsf{sa}} \wedge \mathfrak{o}$ coincide at n=5 with $175\,139$ isomorphy types. On the other hand, $\mathfrak{sg}_* \wedge \mathfrak{o}^{\mathsf{sa}}$, $\mathfrak{sg}_*^{\mathsf{sa}} \wedge \mathfrak{o}^{\mathsf{sa}}$ and $(\mathfrak{sg}_* \wedge \mathfrak{o})^{\mathsf{sa}}$ coincide at n=5 with $167\,989$ types.

This yields new inference rules for Gaussian conditional independence:

$$[i \perp\!\!\!\perp j \mid km] \wedge [i \perp\!\!\!\perp m \mid l] \wedge [j \perp\!\!\!\perp k \mid i] \wedge [j \perp\!\!\!\perp m] \wedge [k \perp\!\!\!\perp l] \ \Rightarrow \ [i \perp\!\!\!\perp j].$$

ightarrow https://mathrepo.mis.mpg.de/SelfadhesiveGaussianCI/ \leftarrow

References

- Tobias Boege, Alessio D'Alì, Thomas Kahle, and Bernd Sturmfels. "The Geometry of Gaussoids". In: Found. Comput. Math. 19.4 (2019), pp. 775–812. DOI: 10.1007/s10208-018-9396-x.
- František Matúš. "Adhesivity of polymatroids". ln: *Discrete Math.* 307.21 (2007), pp. 2464–2477. DOI: 10.1016/j.disc.2006.11.013.
- Milan Studený. "Structural semigraphoids". In: *Int. J. Gen. Syst.* 22.2 (1994), pp. 207–217. DOI: 10.1080/03081079308935207.