Polyhedra in information theory

Tobias Boege

Department of Mathematics and Statistics UiT The Arctic University of Norway

> Mørketidens Mattemøte Tromsø, 24 January 2025

Let $X \in \Delta(d)$ be a random variable taking finitely many values $\{1, \ldots, d\}$ with non-negative probabilities p_1, \ldots, p_d . Its *Shannon entropy* is

$$H(X) \coloneqq \sum_{i=1}^{d} p_i \log(1/p_i) \quad [\text{with } 0 \cdot \log(1/0) \coloneqq 0]$$

Let $X \in \Delta(d)$ be a random variable taking finitely many values $\{1, \ldots, d\}$ with non-negative probabilities p_1, \ldots, p_d . Its *Shannon entropy* is

$$H(X) := \sum_{i=1}^{d} p_i \log(1/p_i) \quad \left[\text{with } 0 \cdot \log(1/0) := 0 \right]$$

• *H* is continuous on $\Delta(d)$ and analytic on the interior.

Let $X \in \Delta(d)$ be a random variable taking finitely many values $\{1, \ldots, d\}$ with non-negative probabilities p_1, \ldots, p_d . Its *Shannon entropy* is

$$H(X) := \sum_{i=1}^{d} p_i \log(1/p_i) \quad [\text{with } 0 \cdot \log(1/0) := 0]$$

- *H* is continuous on $\Delta(d)$ and analytic on the interior.
- ► A random vector $X \in \Delta(d_i : i \in N)$ is a random variable in $\Delta(\prod_{i \in N} d_i)$, so the definition of H extends to vectors.

Let $X \in \Delta(d)$ be a random variable taking finitely many values $\{1, \ldots, d\}$ with non-negative probabilities p_1, \ldots, p_d . Its *Shannon entropy* is

$$H(X) \coloneqq \sum_{i=1}^{d} p_i \log(1/p_i) \quad [\text{with } 0 \cdot \log(1/0) \coloneqq 0]$$

- *H* is continuous on $\Delta(d)$ and analytic on the interior.
- ► A random vector $X \in \Delta(d_i : i \in N)$ is a random variable in $\Delta(\prod_{i \in N} d_i)$, so the definition of H extends to vectors.
- ▶ For a random vector $X = (X_i : i \in N)$ we have 2^N marginals and we collect their entropies in an entropy profile $h_X : 2^N \to \mathbb{R}$.
 - ▶ For example (X, Y) has entropy profile $(0, H(X), H(Y), H(X, Y)) \in \mathbb{R}^4$.

Entropy as information

Figure: Entropy of a binary random variable X as a function of p = Pr[X = heads].

Entropy profile encodes qualitative information about the system of random variables:

Entropy profile encodes qualitative information about the system of random variables:

• Subvector X_I is functionally dependent on X_K if and only if $h_X(I \cup K) = h_X(K)$.

Entropy profile encodes qualitative information about the system of random variables:

- Subvector X_I is functionally dependent on X_K if and only if $h_X(I \cup K) = h_X(K)$.
- ► Subvectors X_I and X_J are conditionally independent given X_K if and only if $h_X(I \cup K) + h_X(J \cup K) = h_X(I \cup J \cup K) + h_X(K)$.

Entropy profile encodes qualitative information about the system of random variables:

- Subvector X_I is functionally dependent on X_K if and only if $h_X(I \cup K) = h_X(K)$.
- ► Subvectors X_I and X_J are conditionally independent given X_K if and only if $h_X(I \cup K) + h_X(J \cup K) = h_X(I \cup J \cup K) + h_X(K)$.

Many applications deal with random vectors only through their entropy profiles:

Entropy profile encodes qualitative information about the system of random variables:

- Subvector X_I is functionally dependent on X_K if and only if $h_X(I \cup K) = h_X(K)$.
- ► Subvectors X_I and X_J are conditionally independent given X_K if and only if $h_X(I \cup K) + h_X(J \cup K) = h_X(I \cup J \cup K) + h_X(K)$.

Many applications deal with random vectors only through their entropy profiles:

 Graphical models in statistics and causality are defined by CI assumptions (e.g., Bayesian networks and d-separation in graphs).

Entropy profile encodes qualitative information about the system of random variables:

- Subvector X_I is functionally dependent on X_K if and only if $h_X(I \cup K) = h_X(K)$.
- ► Subvectors X_I and X_J are conditionally independent given X_K if and only if $h_X(I \cup K) + h_X(J \cup K) = h_X(I \cup J \cup K) + h_X(K)$.

Many applications deal with random vectors only through their entropy profiles:

- Graphical models in statistics and causality are defined by CI assumptions (e.g., Bayesian networks and d-separation in graphs).
- Cryptographic protocols use FD and CI constraints to specify operation and information-theoretic security (e.g., secret sharing).

Entropy profile encodes qualitative information about the system of random variables:

- Subvector X_I is functionally dependent on X_K if and only if $h_X(I \cup K) = h_X(K)$.
- ► Subvectors X_I and X_J are conditionally independent given X_K if and only if $h_X(I \cup K) + h_X(J \cup K) = h_X(I \cup J \cup K) + h_X(K)$.

Many applications deal with random vectors only through their entropy profiles:

- Graphical models in statistics and causality are defined by CI assumptions (e.g., Bayesian networks and d-separation in graphs).
- Cryptographic protocols use FD and CI constraints to specify operation and information-theoretic security (e.g., secret sharing).
- Quantities in information theory are defined by linear optimization over entropy profiles with FD and Cl constraints (e.g., common information).

• Given: participants $N = \{1, ..., n\}$ and a set of qualified subsets $\mathscr{Q} \subseteq 2^N$.

- Given: participants $N = \{1, ..., n\}$ and a set of qualified subsets $\mathscr{Q} \subseteq 2^N$.
- Devise a scheme (a system of random variables) to distribute shares s_p of a randomly generated secret s to the participants such that

- Given: participants $N = \{1, ..., n\}$ and a set of qualified subsets $\mathscr{Q} \subseteq 2^N$.
- ▶ Devise a scheme (a system of random variables) to distribute shares s_p of a randomly generated secret s to the participants such that
 - \blacktriangleright s_p is a function of s,

- Given: participants $N = \{1, ..., n\}$ and a set of qualified subsets $\mathscr{Q} \subseteq 2^N$.
- ▶ Devise a scheme (a system of random variables) to distribute shares s_p of a randomly generated secret s to the participants such that
 - \triangleright s_p is a function of s,
 - ▶ *s* is a function of $s_A = (s_p : p \in A)$ whenever $A \in \mathscr{Q}$,

- Given: participants $N = \{1, ..., n\}$ and a set of qualified subsets $\mathscr{Q} \subseteq 2^N$.
- ▶ Devise a scheme (a system of random variables) to distribute shares s_p of a randomly generated secret s to the participants such that
 - ▶ s_p is a function of s,
 - ▶ *s* is a function of $s_A = (s_p : p \in A)$ whenever $A \in \mathscr{Q}$,
 - ▶ *s* is independent of s_B whenever $B \notin \mathcal{Q}$.

- Given: participants $N = \{1, ..., n\}$ and a set of qualified subsets $\mathscr{Q} \subseteq 2^N$.
- ▶ Devise a scheme (a system of random variables) to distribute shares s_p of a randomly generated secret s to the participants such that
 - ▶ s_p is a function of s,
 - ▶ *s* is a function of $s_A = (s_p : p \in A)$ whenever $A \in \mathscr{Q}$,
 - ▶ *s* is independent of s_B whenever $B \notin \mathcal{Q}$.
- ▶ The information ratio is $\sigma(h) = \frac{1}{h(s)} \max \{h(p) : p \in N\}$.

- Given: participants $N = \{1, ..., n\}$ and a set of qualified subsets $\mathscr{Q} \subseteq 2^N$.
- ▶ Devise a scheme (a system of random variables) to distribute shares s_p of a randomly generated secret s to the participants such that
 - \blacktriangleright s_p is a function of s,
 - ▶ *s* is a function of $s_A = (s_p : p \in A)$ whenever $A \in \mathscr{Q}$,
 - ▶ *s* is independent of s_B whenever $B \notin \mathcal{Q}$.
- The information ratio is $\sigma(h) = 1/h(s) \max \{h(p) : p \in N\}$.
- ► The optimal information ratio \(\alpha\) = inf \{\(\sigma(h): h \= \mathcal{D}\)\} can be determined by linear optimization over the set of entropy profiles.

Let $\mathbf{H}_N^* \subseteq \mathbb{R}^{2^N}$ consist of all h_X where X is an N-variate discrete random vector. \mathbf{H}_N^* is the image of $\bigcup_{d_1=1}^{\infty} \cdots \bigcup_{d_n=1}^{\infty} \Delta(d_1, \ldots, d_n)$ under the transcendental map $X \mapsto h_X$.

Let $\mathbf{H}_N^* \subseteq \mathbb{R}^{2^N}$ consist of all h_X where X is an N-variate discrete random vector. \mathbf{H}_N^* is the image of $\bigcup_{d_1=1}^{\infty} \cdots \bigcup_{d_n=1}^{\infty} \Delta(d_1, \ldots, d_n)$ under the transcendental map $X \mapsto h_X$.

Theorem

 $\overline{\mathbf{H}_{N}^{*}}$ is a convex cone of dimension $2^{N} - 1$. Furthermore relint $(\overline{\mathbf{H}_{N}^{*}}) \subseteq \mathbf{H}_{N}^{*}$.

Let $\mathbf{H}_N^* \subseteq \mathbb{R}^{2^N}$ consist of all h_X where X is an N-variate discrete random vector. \mathbf{H}_N^* is the image of $\bigcup_{d_1=1}^{\infty} \cdots \bigcup_{d_n=1}^{\infty} \Delta(d_1, \ldots, d_n)$ under the transcendental map $X \mapsto h_X$.

Theorem

 $\overline{\mathbf{H}_{N}^{*}}$ is a convex cone of dimension $2^{N} - 1$. Furthermore relint $(\overline{\mathbf{H}_{N}^{*}}) \subseteq \mathbf{H}_{N}^{*}$.

► Linear optimization is well-behaved! Elements of the dual cone (linear information inequalities) can give bounds for optimization problems.

Let $\mathbf{H}_N^* \subseteq \mathbb{R}^{2^N}$ consist of all h_X where X is an N-variate discrete random vector. \mathbf{H}_N^* is the image of $\bigcup_{d_1=1}^{\infty} \cdots \bigcup_{d_n=1}^{\infty} \Delta(d_1, \ldots, d_n)$ under the transcendental map $X \mapsto h_X$.

Theorem

 $\overline{\mathbf{H}_{N}^{*}}$ is a convex cone of dimension $2^{N} - 1$. Furthermore relint $(\overline{\mathbf{H}_{N}^{*}}) \subseteq \mathbf{H}_{N}^{*}$.

► Linear optimization is well-behaved! Elements of the dual cone (linear information inequalities) can give bounds for optimization problems.

Problem

Find a description of the boundary of H_3^* .

▶ A function $h: 2^N \to \mathbb{R}$ is a polymatroid if

►
$$h(\emptyset) = 0$$
,

▶
$$h(I | K) := h(I \cup K) - h(K) \ge 0$$
 ("=" is FD).

►
$$h(I:J | K) := h(I \cup K) + h(J \cup K) - h(I \cup J \cup K) - h(K) \ge 0$$
 ("=" is CI).

▶ A function $h: 2^N \to \mathbb{R}$ is a polymatroid if

▶ The set \mathbf{P}_N of polymatroids is a polyhedral cone in \mathbb{R}^{2^N} and $\mathbf{P}_N \supseteq \overline{\mathbf{H}_N^*} \to |\mathsf{T}|\mathsf{P}$.

▶ A function $h: 2^N \to \mathbb{R}$ is a polymatroid if

- ▶ The set \mathbf{P}_N of polymatroids is a polyhedral cone in \mathbb{R}^{2^N} and $\mathbf{P}_N \supseteq \overline{\mathbf{H}_N^*} \to |\mathsf{TIP}|$.
- Elements of the dual cone of P_N are the Shannon inequalities.

▶ A function $h: 2^N \to \mathbb{R}$ is a polymatroid if

- ▶ The set \mathbf{P}_N of polymatroids is a polyhedral cone in \mathbb{R}^{2^N} and $\mathbf{P}_N \supseteq \overline{\mathbf{H}_N^*} \to |\mathsf{T}|\mathsf{P}$.
- Elements of the dual cone of P_N are the Shannon inequalities.
- ▶ FD and CI constraints correspond to faces of $\mathbf{P}_N \leftarrow LP$ over $\overline{\mathbf{H}_N^*}$.

▶ A function $h: 2^N \to \mathbb{R}$ is a polymatroid if

►
$$h(\emptyset) = 0$$
,
► $h(I \mid K) := h(I \cup K) - h(K) \ge 0$ ("=" is FD).

- ► $h(I:J | K) := h(I \cup K) + h(J \cup K) h(I \cup J \cup K) h(K) \ge 0$ ("=" is Cl).
- ▶ The set \mathbf{P}_N of polymatroids is a polyhedral cone in \mathbb{R}^{2^N} and $\mathbf{P}_N \supseteq \overline{\mathbf{H}_N^*} \to |\mathsf{TIP}|$.
- Elements of the dual cone of \mathbf{P}_N are the Shannon inequalities.
- ▶ FD and CI constraints correspond to faces of $\mathbf{P}_N \leftarrow LP$ over $\overline{\mathbf{H}_N^*}$.

Theorem ([Mat07])

 $\overline{\mathbf{H}_{N}^{*}}$ is not polyhedral for $|N| \geq 4$.

A conditional information inequality is an inequality valid only on a linear slice of H_N^* .

A conditional information inequality is an inequality valid only on a linear slice of H_N^* .

Theorem ([KR13] & [Stu21] & [Boe23])

Up to symmetry there are precisely ten minimal sets of conditional independence assumptions on four random variables which ensure $\text{Ingleton} \ge 0$.

A conditional information inequality is an inequality valid only on a linear slice of \mathbf{H}_{N}^{*} .

Theorem ([KR13] & [Stu21] & [Boe23])

Up to symmetry there are precisely ten minimal sets of conditional independence assumptions on four random variables which ensure $\text{Ingleton} \ge 0$.

Corollary (Which faces of \mathbf{P}_N have entropic points on them?)

On four discrete random variables there are precisely 18 478 realizable conditional independence structures. (For general N this problem is undecidable!)

A conditional information inequality is an inequality valid only on a linear slice of \mathbf{H}_{N}^{*} .

Theorem ([KR13] & [Stu21] & [Boe23])

Up to symmetry there are precisely ten minimal sets of conditional independence assumptions on four random variables which ensure $\text{Ingleton} \ge 0$.

Corollary (Which faces of \mathbf{P}_N have entropic points on them?)

On four discrete random variables there are precisely 18 478 realizable conditional independence structures. (For general N this problem is undecidable!)

Problem

Which of these inequalities hold on $\overline{\mathbf{H}_{4}^{*}}$? (Some do, some don't ...)

All widely used polyhedral outer approximations to $\overline{\mathbf{H}_{N}^{*}}$ which improve upon \mathbf{P}_{N} are derived from an extension property

All widely used polyhedral outer approximations to $\overline{\mathbf{H}_N^*}$ which improve upon \mathbf{P}_N are derived from an extension property which is a theorem of the form:

▶ If $h \in \overline{\mathbf{H}_N^*}$, then there exists $\overline{h} \in \overline{\mathbf{H}_M^*}$ for some $M \supseteq N$ such that $\overline{h}|_N = h$ and some other linear conditions $\varphi(\overline{h}) \ge 0$ hold.

All widely used polyhedral outer approximations to $\overline{\mathbf{H}_N^*}$ which improve upon \mathbf{P}_N are derived from an extension property which is a theorem of the form:

- ▶ If $h \in \overline{\mathbf{H}_N^*}$, then there exists $\overline{h} \in \overline{\mathbf{H}_M^*}$ for some $M \supseteq N$ such that $\overline{h}|_N = h$ and some other linear conditions $\varphi(\overline{h}) \ge 0$ hold.
- The extension property is encapsulated in its cone $E_N^M = \{ \varphi(\overline{h}) \ge 0 \}.$

All widely used polyhedral outer approximations to $\overline{\mathbf{H}_N^*}$ which improve upon \mathbf{P}_N are derived from an extension property which is a theorem of the form:

- ▶ If $h \in \overline{\mathbf{H}_N^*}$, then there exists $\overline{h} \in \overline{\mathbf{H}_M^*}$ for some $M \supseteq N$ such that $\overline{h}|_N = h$ and some other linear conditions $\varphi(\overline{h}) \ge 0$ hold.
- The extension property is encapsulated in its cone $E_N^M = \{ \varphi(\overline{h}) \ge 0 \}.$

Extension principle: Let E_N^M be the cone of an extension property and $\pi_N^M : \mathbb{R}^{2^M} \to \mathbb{R}^{2^N}$ the canonical projection. Then $\overline{\mathbf{H}_N^*} = \pi_N^M (E_N^M \cap \overline{\mathbf{H}_M^*})$.

All widely used polyhedral outer approximations to $\overline{\mathbf{H}_N^*}$ which improve upon \mathbf{P}_N are derived from an extension property which is a theorem of the form:

- ▶ If $h \in \overline{\mathbf{H}_N^*}$, then there exists $\overline{h} \in \overline{\mathbf{H}_M^*}$ for some $M \supseteq N$ such that $\overline{h}|_N = h$ and some other linear conditions $\varphi(\overline{h}) \ge 0$ hold.
- The extension property is encapsulated in its cone $E_N^M = \{ \varphi(\overline{h}) \ge 0 \}.$

Extension principle: Let E_N^M be the cone of an extension property and $\pi_N^M : \mathbb{R}^{2^M} \to \mathbb{R}^{2^N}$ the canonical projection. Then $\overline{\mathbf{H}_N^*} = \pi_N^M (E_N^M \cap \overline{\mathbf{H}_M^*})$.

Relax:
$$\overline{\mathsf{H}_{N}^{*}} \subseteq \pi_{N}^{M}(E_{N}^{M} \cap \mathsf{P}_{M}).$$

- ► Consider $h \in \mathbf{P}_N$ and pick any $L \subseteq N$.
- ► An *L*-copy of *N* is a set *M* with |N| = |M| and $N \cap M = L$ with a bijection $\sigma : N \to M$ fixing *L* pointwise.

- Consider $h \in \mathbf{P}_N$ and pick any $L \subseteq N$.
- ► An *L*-copy of *N* is a set *M* with |N| = |M| and $N \cap M = L$ with a bijection $\sigma : N \to M$ fixing *L* pointwise. This induces an *L*-copy of *h*: $\sigma(h) \in \mathbf{P}_M$.

- Consider $h \in \mathbf{P}_N$ and pick any $L \subseteq N$.
- ► An *L*-copy of *N* is a set *M* with |N| = |M| and $N \cap M = L$ with a bijection $\sigma: N \to M$ fixing *L* pointwise. This induces an *L*-copy of *h*: $\sigma(h) \in \mathbf{P}_M$.

The Copy lemma states:

• Consider $h \in \mathbf{P}_N$ and pick any $L \subseteq N$.

► An *L*-copy of *N* is a set *M* with |N| = |M| and $N \cap M = L$ with a bijection $\sigma: N \to M$ fixing *L* pointwise. This induces an *L*-copy of *h*: $\sigma(h) \in \mathbf{P}_M$.

The Copy lemma states:

▶ Let
$$h \in \overline{\mathbf{H}_N^*}$$
 and $L \subseteq N$, fix an *L*-copy $\sigma : N \to M$ of *N*.

• Consider $h \in \mathbf{P}_N$ and pick any $L \subseteq N$.

► An *L*-copy of *N* is a set *M* with |N| = |M| and $N \cap M = L$ with a bijection $\sigma: N \to M$ fixing *L* pointwise. This induces an *L*-copy of *h*: $\sigma(h) \in \mathbf{P}_M$.

The Copy lemma states:

• Consider $h \in \mathbf{P}_N$ and pick any $L \subseteq N$.

► An *L*-copy of *N* is a set *M* with |N| = |M| and $N \cap M = L$ with a bijection $\sigma: N \to M$ fixing *L* pointwise. This induces an *L*-copy of *h*: $\sigma(h) \in \mathbf{P}_M$.

The Copy lemma states:

▶ Relaxation: only require $\overline{h} \in \mathbf{P}_{NM}$! This gives a tighter outer bound than \mathbf{P}_N :

$$\mathbf{P}_N \supseteq \bigcap_{L \subseteq N} \mathbf{Copy}_N^L \supseteq \overline{\mathbf{H}_N^*}.$$

To derive new information inequalities [DFZ11] and many more:

► Take any polyhedral cone $\mathbf{Q}_N \supseteq \overline{\mathbf{H}_N^*}$.

- ▶ Take any polyhedral cone $\mathbf{Q}_N \supseteq \overline{\mathbf{H}_N^*}$.
- ▶ Replace $\overline{H^*_{\bullet}}$ in an extension property with Q_{\bullet} .

- ▶ Take any polyhedral cone $\mathbf{Q}_N \supseteq \overline{\mathbf{H}_N^*}$.
- ▶ Replace $\overline{H_{\bullet}^*}$ in an extension property with Q_{\bullet} .
- ▶ Project to obtain tighter polyhedral cone $\mathbf{Q}'_N \supseteq \overline{\mathbf{H}^*_N}$.

- ▶ Take any polyhedral cone $\mathbf{Q}_N \supseteq \overline{\mathbf{H}_N^*}$.
- ▶ Replace $\overline{H^*_{\bullet}}$ in an extension property with Q_{\bullet} .
- ▶ Project to obtain tighter polyhedral cone $\mathbf{Q}'_N \supseteq \overline{\mathbf{H}^*_N}$.
- ► Mix and iterate different extension properties.

- ▶ Take any polyhedral cone $\mathbf{Q}_N \supseteq \overline{\mathbf{H}_N^*}$.
- ▶ Replace $\overline{H_{\bullet}^*}$ in an extension property with Q_{\bullet} .
- ▶ Project to obtain tighter polyhedral cone $\mathbf{Q}'_N \supseteq \overline{\mathbf{H}^*_N}$.
- ► Mix and iterate different extension properties.
- ► Exact polyhedral computations certify validity of new inequalities.

To derive new information inequalities [DFZ11] and many more:

- ▶ Take any polyhedral cone $\mathbf{Q}_N \supseteq \overline{\mathbf{H}_N^*}$.
- ▶ Replace $\overline{H_{\bullet}^*}$ in an extension property with Q_{\bullet} .
- ▶ Project to obtain tighter polyhedral cone $\mathbf{Q}'_N \supseteq \overline{\mathbf{H}^*_N}$.
- ► Mix and iterate different extension properties.
- ► Exact polyhedral computations certify validity of new inequalities.

To derive new information inequalities [DFZ11] and many more:

- ▶ Take any polyhedral cone $\mathbf{Q}_N \supseteq \overline{\mathbf{H}_N^*}$.
- ▶ Replace $\overline{H_{\bullet}^*}$ in an extension property with Q_{\bullet} .
- ▶ Project to obtain tighter polyhedral cone $\mathbf{Q}'_N \supseteq \overline{\mathbf{H}^*_N}$.
- ► Mix and iterate different extension properties.
- ► Exact polyhedral computations certify validity of new inequalities.

To disprove information inequalities [KR13]:

• Take an entropy profile h.

To derive new information inequalities [DFZ11] and many more:

- ▶ Take any polyhedral cone $\mathbf{Q}_N \supseteq \overline{\mathbf{H}_N^*}$.
- ▶ Replace $\overline{H_{\bullet}^*}$ in an extension property with Q_{\bullet} .
- ▶ Project to obtain tighter polyhedral cone $\mathbf{Q}'_N \supseteq \overline{\mathbf{H}^*_N}$.
- ► Mix and iterate different extension properties.
- ► Exact polyhedral computations certify validity of new inequalities.

- ▶ Take an entropy profile h.
- Apply a sequence of extension properties to $h \rightarrow$ polyhedron Q.

To derive new information inequalities [DFZ11] and many more:

- ▶ Take any polyhedral cone $\mathbf{Q}_N \supseteq \overline{\mathbf{H}_N^*}$.
- ▶ Replace $\overline{H_{\bullet}^*}$ in an extension property with Q_{\bullet} .
- ▶ Project to obtain tighter polyhedral cone $\mathbf{Q}'_N \supseteq \overline{\mathbf{H}^*_N}$.
- ► Mix and iterate different extension properties.
- ► Exact polyhedral computations certify validity of new inequalities.

- \blacktriangleright Take an entropy profile *h*.
- Apply a sequence of extension properties to $h \rightarrow$ polyhedron Q.
- If every point in Q violates an inequality, it cannot be valid.

To derive new information inequalities [DFZ11] and many more:

- ► Take any polyhedral cone $\mathbf{Q}_N \supseteq \overline{\mathbf{H}_N^*}$.
- ▶ Replace $\overline{H^*_{\bullet}}$ in an extension property with Q_{\bullet} .
- ▶ Project to obtain tighter polyhedral cone $\mathbf{Q}'_N \supseteq \overline{\mathbf{H}^*_N}$.
- ► Mix and iterate different extension properties.
- ► Exact polyhedral computations certify validity of new inequalities.

- \blacktriangleright Take an entropy profile *h*.
- Apply a sequence of extension properties to $h \rightarrow$ polyhedron Q.
- If every point in Q violates an inequality, it cannot be valid.
- ► Exact Farkas certificate for invalidity.

► There exist more extension properties: Ahlswede–Körner, Slepian–Wolf, ...

- ▶ There exist more extension properties: Ahlswede–Körner, Slepian–Wolf,
- ▶ The same concept applies to algebraic matroids (subset of $\overline{\mathbf{H}^*}$): Dress-Lovász.

- ▶ There exist more extension properties: Ahlswede–Körner, Slepian–Wolf, ...
- ▶ The same concept applies to algebraic matroids (subset of $\overline{\mathbf{H}^*}$): Dress-Lovász.
- Over 200 information inequalities and several infinite families are derived from the Copy lemma alone. They have been tabulated but are not reusable data.

Rule [43] Given:

aI(A; B)

$$\leq bI(A; B|C) + cI(A; C|B) + zI(B; C|A)$$

+ eI(A; B|D) + fI(A; D|B)

+
$$(b' + d' + z)I(B; D|A) + hI(C; D)$$

+ iI(C; D|A) + zI(C; D|B)

and

a'I(A; B) $\leq b'I(A; B|C) + c'I(A; C|B) + d'I(B; C|A)$ + e'I(A; B|D) + f'I(A; D|B) + g'I(B; D|A)+ b'I(C; D) + i'I(C; D|A) + i'I(C; D|B)

Get:

 $\begin{array}{rl} (a+a'+z)I(A;B)\\ \leq & (a+b+c+f+b'+2z)I(A;B|C)\\ + & (-a+b+c+e+c'+z)I(A;C|B)\\ + & (d'+z)I(B;C|A)+(e+e'+z)I(A;B|D)\\ + & (f+f')I(A;D|B)\\ + & (-a'+b'+e'+g'+i')I(B;D|A)\\ + & (h+h'+z)I(C;D)+(i+i')I(C;D|A)\\ + & (j')I(C;D|B) \end{array}$

Using: RS is copy of CD over ABSubstitutions: A C R S; AD B R S Abbreviated Proof of (75): T: D-copy of A over BCRS. L1: -a.c. +c.d. +r.cd.a +c.s.a +b.d.s +a.bs.d +2a.cr.bs +a.bs.cr +d.r.abcs +d.s.abcr

SL1: d.t.a +c.d.t +a.t.cd +c.r.t +a.t.cr +d.r.act +b.t.acdr +a.t.bs +c.s.at +b.t.acs +d.t.s +a.s.dt +b.d.ast +c.t.abds +a.r.bcst +r.ad.bcst +s.ad.bcrt +d.t.abcrs C2L1: 3t.ad.bcrs

S: C-copy of A over BDR.

L2: -2a.c. +2c.d. +a.b.cr +2a.c.br +c.ar.b +a.b.dr +4a.d.br +2a.br.d +2d.br.a +2r.cd.a +d.r.abc

SL2: c.s.b +a.b.cs +c.d.s +a.s.cd +d.s.abc +3a.s.br +3c.s.br +c.r.abs +d.r.s +a.s.dr +d.r.abs +d.br.as +c.r.ads +b.s.acdr +2c.s.abdr +2d.s.abcr

C2L2: 7s.ac.bdr

R: D-copy of C over AB.

S: c.r.a +3c.r.b +d.r.a +7d.r.b +c.d.r +2b.r.acd +r.ab.cd +9c.r.abd +3d.r.abc

C2: 16r.cd.ab

- ▶ There exist more extension properties: Ahlswede–Körner, Slepian–Wolf, ...
- ▶ The same concept applies to algebraic matroids (subset of $\overline{\mathbf{H}^*}$): Dress-Lovász.
- Over 200 information inequalities and several infinite families are derived from the Copy lemma alone. They have been tabulated but are not reusable data.

- ▶ There exist more extension properties: Ahlswede–Körner, Slepian–Wolf, ...
- ▶ The same concept applies to algebraic matroids (subset of $\overline{\mathbf{H}^*}$): Dress-Lovász.
- Over 200 information inequalities and several infinite families are derived from the Copy lemma alone. They have been tabulated but are not reusable data.
- ► Want a framework to combine and iterate extension properties based on polyhedra and linear programming and certificates for the validity of information inequalities.

- ▶ There exist more extension properties: Ahlswede–Körner, Slepian–Wolf, ...
- ▶ The same concept applies to algebraic matroids (subset of $\overline{\mathbf{H}^*}$): Dress-Lovász.
- Over 200 information inequalities and several infinite families are derived from the Copy lemma alone. They have been tabulated but are not reusable data.
- ► Want a framework to combine and iterate extension properties based on polyhedra and linear programming and certificates for the validity of information inequalities.

Thank you!

Supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101110545.

References

- [BFP24] Michael Bamiloshin, Oriol Farràs, and Carles Padró. A Note on Extension Properties and Representations of Matroids. 2024. arXiv: 2306.15085 [math.CO].
- [Boe23] Tobias Boege. "No Eleventh Conditional Ingleton Inequality". In: Experimental Mathematics (2023). DOI: 10.1080/10586458.2023.2294827.
- [DFZ11] Randall Dougherty, Chris Freiling, and Kenneth Zeger. Non-Shannon Information Inequalities in Four Random Variables. 2011. arXiv: 1104.3602v1 [cs.IT].
- [KR13] Tarik Kaced and Andrei Romashchenko. "Conditional information inequalities for entropic and almost entropic points". In: IEEE Trans. Inf. Theory 59.11 (2013), pp. 7149–7167. DOI: 10.1109/TIT.2013.2274614.
- [Mat06] František Matúš. "Piecewise linear conditional information inequality". In: *IEEE Trans. Inf. Theory* 52.1 (2006), pp. 236–238. DOI: 10.1109/TIT.2005.860438.
- [Mat07] František Matúš. "Infinitely many information inequalities". In: *Proc. IEEE ISIT 2007*. 2007, pp. 41–44.
- [Stu21] Milan Studený. "Conditional independence structures over four discrete random variables revisited: conditional ingleton inequalities". In: IEEE Trans. Inf. Theory 67.11 (2021), pp. 7030–7049. DOI: 10.1109/TIT.2021.3104250.