Tobias Boege, Kaie Kubjas, Pratik Misra, Liam Solus

Department of Mathematics KTH Royal Institute of Technology, Sweden

Seminar on Statistics and Data Science TU Munich, 26 March 2024

Gaussian DAG models

► A linear structural equation model defines random variables X recursively via a directed acyclic graph G = (V, E) and Gaussian noise:

$$X_j = \sum_{i \in \mathrm{pa}(j)} \lambda_{ij} X_i + arepsilon_j, \quad arepsilon_j \sim \mathcal{N}(0, \omega_j).$$

Gaussian DAG models

► A linear structural equation model defines random variables X recursively via a directed acyclic graph G = (V, E) and Gaussian noise:

$$X_j = \sum_{i \in \mathrm{pa}(j)} \lambda_{ij} X_i + arepsilon_j, \quad arepsilon_j \sim \mathcal{N}(\mathbf{0}, \omega_j).$$

The vector X is again Gaussian with mean zero. Since G is acyclic, we can solve for the covariance matrix Σ:

$$\Sigma = (I - \Lambda)^{-\mathsf{T}} \Omega (I - \Lambda)^{-1}, \quad \text{with } \Lambda \in \mathbb{R}^{\mathsf{E}} \text{ and } \Omega = \operatorname{diag}(\omega).$$

Gaussian DAG models

► A linear structural equation model defines random variables X recursively via a directed acyclic graph G = (V, E) and Gaussian noise:

$$X_j = \sum_{i \in \mathrm{pa}(j)} \lambda_{ij} X_i + \varepsilon_j, \quad \varepsilon_j \sim \mathcal{N}(0, \omega_j).$$

The vector X is again Gaussian with mean zero. Since G is acyclic, we can solve for the covariance matrix Σ:

$$\Sigma = (I - \Lambda)^{-\mathsf{T}} \Omega (I - \Lambda)^{-1}, \quad ext{with } \Lambda \in \mathbb{R}^{\mathsf{E}} ext{ and } \Omega = ext{diag}(\omega).$$

▶ All such matrices form the model $\mathcal{M}(G)$.

• $\mathcal{M}(G)$ is an irreducible variety and smooth submanifold of PD_V .

- $\mathcal{M}(G)$ is an irreducible variety and smooth submanifold of PD_V .
- The parameters (ω, Λ) are rationally identifiable.

- $\mathcal{M}(G)$ is an irreducible variety and smooth submanifold of PD_V .
- The parameters (ω, Λ) are rationally identifiable.
- ▶ The model is equivalently given by the Markov properties of the DAG, e.g.,

 $\mathcal{M}(G) = \{ \Sigma \in \mathsf{PD}_V : i \perp j \mid \mathrm{pa}(j) \text{ whenever } ij \notin E \}.$

- $\mathcal{M}(G)$ is an irreducible variety and smooth submanifold of PD_V .
- The parameters (ω, Λ) are rationally identifiable.
- ▶ The model is equivalently given by the Markov properties of the DAG, e.g.,

 $\mathcal{M}(G) = \{ \Sigma \in \mathsf{PD}_V : i \perp j \mid \mathrm{pa}(j) \text{ whenever } ij \notin E \}.$

► Almost all distributions in *M*(*G*) are faithful to *G*, i.e., do not satisfy more CI statements than the global Markov property.

- $\mathcal{M}(G)$ is an irreducible variety and smooth submanifold of PD_V .
- The parameters (ω, Λ) are rationally identifiable.
- ▶ The model is equivalently given by the Markov properties of the DAG, e.g.,

 $\mathcal{M}(G) = \{ \Sigma \in \mathsf{PD}_{V} : i \perp j \mid \mathrm{pa}(j) \text{ whenever } ij \notin E \}.$

- ► Almost all distributions in *M*(*G*) are faithful to *G*, i.e., do not satisfy more CI statements than the global Markov property.
- ▶ Model equivalence $\mathcal{M}(G) = \mathcal{M}(H)$ is combinatorially characterized: if and only if G and H have the same skeleton and v-structures.

▶ In a colored Gaussian DAG model, the vertices and edges of *G* are partitioned into color classes via a coloring function $c : V \sqcup E \rightarrow C$.

- ▶ In a colored Gaussian DAG model, the vertices and edges of *G* are partitioned into color classes via a coloring function $c : V \sqcup E \rightarrow C$.
- ► The parametrization $\Sigma = (I \Lambda)^{-T} \Omega (I \Lambda)^{-1}$ stays the same but we reduce the parameter space: $\omega_i = \omega_j$ if c(i) = c(j) and $\lambda_{ij} = \lambda_{kl}$ if c(ij) = c(kl).

- ▶ In a colored Gaussian DAG model, the vertices and edges of *G* are partitioned into color classes via a coloring function $c : V \sqcup E \rightarrow C$.
- The parametrization Σ = (I − Λ)^{-T}Ω(I − Λ)⁻¹ stays the same but we reduce the parameter space: ω_i = ω_j if c(i) = c(j) and λ_{ij} = λ_{kl} if c(ij) = c(kl).

• This restricts the parameters to a \geq linear subspace \leq .

- ▶ In a colored Gaussian DAG model, the vertices and edges of *G* are partitioned into color classes via a coloring function $c : V \sqcup E \rightarrow C$.
- The parametrization Σ = (I − Λ)^{-T}Ω(I − Λ)⁻¹ stays the same but we reduce the parameter space: ω_i = ω_j if c(i) = c(j) and λ_{ij} = λ_{kl} if c(ij) = c(kl).

- This restricts the parameters to a \geq linear subspace \leq .
- ▶ Vertex-only colorings correspond to partial homoscedasticity [WD23].

- ▶ In a colored Gaussian DAG model, the vertices and edges of *G* are partitioned into color classes via a coloring function $c : V \sqcup E \rightarrow C$.
- The parametrization Σ = (I − Λ)^{-T}Ω(I − Λ)⁻¹ stays the same but we reduce the parameter space: ω_i = ω_j if c(i) = c(j) and λ_{ij} = λ_{kl} if c(ij) = c(kl).

- This restricts the parameters to a \geq linear subspace \leq .
- Vertex-only colorings correspond to partial homoscedasticity [WD23].
- ► Coloring reduces Markov-equivalence classes which eases causal discovery.

▶ It follows from the recursive factorization and some linear algebra that

$$\omega_j = \frac{|\boldsymbol{\Sigma}_{j \cup \mathrm{pa}(j)}|}{|\boldsymbol{\Sigma}_{\mathrm{pa}(j)}|}, \quad \lambda_{ij} = \frac{|\boldsymbol{\Sigma}_{ij|\mathrm{pa}(j) \setminus i}|}{|\boldsymbol{\Sigma}_{\mathrm{pa}(j)}|}.$$

▶ It follows from the recursive factorization and some linear algebra that

$$\omega_j = \frac{|\Sigma_{j \cup \mathrm{pa}(j)}|}{|\Sigma_{\mathrm{pa}(j)}|}, \quad \lambda_{ij} = \frac{|\Sigma_{ij|\mathrm{pa}(j) \setminus i}|}{|\Sigma_{\mathrm{pa}(j)}|}.$$

► Study the rational functions

$$\omega_{j|A}(\Sigma) = rac{|\Sigma_{j\cup A}|}{|\Sigma_A|}, \quad \lambda_{ij|A}(\Sigma) = rac{|\Sigma_{ij|A\setminus i}|}{|\Sigma_A|}.$$

▶ It follows from the recursive factorization and some linear algebra that

$$\omega_j = \frac{|\boldsymbol{\Sigma}_{j \cup \mathrm{pa}(j)}|}{|\boldsymbol{\Sigma}_{\mathrm{pa}(j)}|}, \quad \lambda_{ij} = \frac{|\boldsymbol{\Sigma}_{ij|\mathrm{pa}(j) \setminus i}|}{|\boldsymbol{\Sigma}_{\mathrm{pa}(j)}|}.$$

► Study the rational functions

$$\omega_{j|A}(\Sigma) = \frac{|\Sigma_{j\cup A}|}{|\Sigma_A|}, \quad \lambda_{ij|A}(\Sigma) = \frac{|\Sigma_{ij|A\setminus i}|}{|\Sigma_A|}.$$

► A set A is identifying for a vertex j resp. edge ij if

$$\omega_j = \omega_{j|A}(\Sigma)$$
 resp. $\lambda_{ij} = \lambda_{ij|A}(\Sigma)$

for all $\Sigma \in \mathcal{M}(G)$.

Theorem

Let G = (V, E) be a DAG. Then:

• $\omega_j = \omega_{j|A}(\Sigma)$ for every $\Sigma \in \mathcal{M}(G)$ if and only if $pa(j) \subseteq A \subseteq V \setminus \overline{de}(j)$. [WD23]

Theorem

Let G = (V, E) be a DAG. Then:

• $\omega_j = \omega_{j|A}(\Sigma)$ for every $\Sigma \in \mathcal{M}(G)$ if and only if $pa(j) \subseteq A \subseteq V \setminus \overline{de}(j)$. [WD23]

• If $ij \notin E$, then $\lambda_{ij} = 0 = \lambda_{ij|A}(\Sigma)$ for every $\Sigma \in \mathcal{M}(G)$ if and only if $A \setminus i$ d-separates *i* and *j* in *G*. [Folklore]

Theorem

Let G = (V, E) be a DAG. Then:

• $\omega_j = \omega_{j|A}(\Sigma)$ for every $\Sigma \in \mathcal{M}(G)$ if and only if $pa(j) \subseteq A \subseteq V \setminus \overline{de}(j)$. [WD23]

- If $ij \notin E$, then $\lambda_{ij} = 0 = \lambda_{ij|A}(\Sigma)$ for every $\Sigma \in \mathcal{M}(G)$ if and only if $A \setminus i$ d-separates *i* and *j* in *G*. [Folklore]
- ► If $ij \in E$, then $\lambda_{ij} = \lambda_{ij|A}(\Sigma)$ for every $\Sigma \in \mathcal{M}(G)$ if and only if $i \in A \subseteq V \setminus \overline{\operatorname{de}}(j)$ and $A \setminus i$ d-separates i and j in the graph G_{ij} which arises from G by deleting the edge ij and the vertices $\operatorname{de}(j)$.

Theorem

Let G = (V, E) be a DAG. Then:

• $\omega_j = \omega_{j|A}(\Sigma)$ for every $\Sigma \in \mathcal{M}(G)$ if and only if $pa(j) \subseteq A \subseteq V \setminus \overline{de}(j)$. [WD23]

• If $ij \notin E$, then $\lambda_{ij} = 0 = \lambda_{ij|A}(\Sigma)$ for every $\Sigma \in \mathcal{M}(G)$ if and only if $A \setminus i$ d-separates *i* and *j* in *G*. [Folklore]

► If $ij \in E$, then $\lambda_{ij} = \lambda_{ij|A}(\Sigma)$ for every $\Sigma \in \mathcal{M}(G)$ if and only if $i \in A \subseteq V \setminus \overline{de}(j)$ and $A \setminus i$ d-separates i and j in the graph G_{ij} which arises from G by deleting the edge ij and the vertices de(j).

► The polynomials $\operatorname{vcr}(i|A, j|B) = |\Sigma_A||\Sigma_B|(\omega_{i|A} - \omega_{j|B})$ resp. $\operatorname{ecr}(ij|A, kl|B) = |\Sigma_A||\Sigma_B|(\lambda_{ij|A} - \lambda_{kl|B})$ vanish on the model $\mathcal{M}(G, c)$ whenever c(i) = c(j) resp. c(ij) = c(kl) and A and B are identifying.

Model geometry

Theorem

For every colored DAG (G, c) the model $\mathcal{M}(G, c)$ is an irreducible variety and a smooth submanifold of PD_V. It is diffeomorphic to an open ball of dimension vc + ec (the number of vertex- and edge-color classes).

Model geometry

Theorem

For every colored DAG (G, c) the model $\mathcal{M}(G, c)$ is an irreducible variety and a smooth submanifold of PD_V. It is diffeomorphic to an open ball of dimension vc + ec (the number of vertex- and edge-color classes).

Theorem

The vanishing ideal $P_{G,c}$ of $\mathcal{M}(G,c)$ is $(I_G + I_c) : S_G$ where:

- ► $I_G = \langle |\Sigma_{ij|pa(j)}| : ij \notin E \rangle$ is the conditional independence ideal of G,
- ► $I_c = \langle vcr(i|pa(i), j|pa(j)) : c(i) = c(j) \rangle + \langle ecr(ij|pa(j), kl|pa(l)) : c(ij) = c(kl) \rangle$ is the coloring ideal of G,
- $S_G = \{\prod_{j \in V} |\Sigma_{pa(j)}|^{k_j} : k_j \in \mathbb{N}\}$ is the monoid of parental principal minors.

Model geometry

Theorem

For every colored DAG (G, c) the model $\mathcal{M}(G, c)$ is an irreducible variety and a smooth submanifold of PD_V. It is diffeomorphic to an open ball of dimension vc + ec (the number of vertex- and edge-color classes).

Theorem

The vanishing ideal $P_{G,c}$ of $\mathcal{M}(G,c)$ is $(I_G + I_c) : S_G$ where:

- ► $I_G = \langle |\Sigma_{ij|pa(j)}| : ij \notin E \rangle$ is the conditional independence ideal of G,
- ► $I_c = \langle vcr(i|pa(i), j|pa(j)) : c(i) = c(j) \rangle + \langle ecr(ij|pa(j), kl|pa(l)) : c(ij) = c(kl) \rangle$ is the coloring ideal of G,
- $S_G = \{\prod_{j \in V} |\Sigma_{pa(j)}|^{k_j} : k_j \in \mathbb{N}\}$ is the monoid of parental principal minors.

Resolves the colored generalization of a conjecture of Sullivant; see also [RP14].

Lemma

Let R, R' be rings, $S \subseteq R$ multiplicatively closed, and:

▶ maps $\phi : R \to R'$ and $\psi : R' \to S^{-1}R$ with $\psi \circ \phi = id_R$,

• for a prime ideal $I' = \langle f_1, \ldots, f_k \rangle$, write $\psi(f_i) = g_i/h_i$ and set $J = \langle g_i \rangle$.

If $I \coloneqq \phi^{-1}(I') \in \operatorname{Spec}(S^{-1}R/J)$, then I = J : S.

Lemma

Let R, R' be rings, $S \subseteq R$ multiplicatively closed, and:

▶ maps
$$\phi : R \to R'$$
 and $\psi : R' \to S^{-1}R$ with $\psi \circ \phi = id_R$,
▶ for a prime ideal $I' = \langle f_1, \dots, f_k \rangle$, write $\psi(f_i) = g_i/h_i$ and set $J = \langle g_i \rangle$.
If $I := \phi^{-1}(I') \in \text{Spec}(S^{-1}R/J)$, then $I = J : S$.

► For example, ϕ = parametrization of $\mathcal{M}(K_n)$, ψ = parameter identification map and l' = linear equations on parameters from missing edges and color classes.

Lemma

▶ maps
$$\phi : R \to R'$$
 and $\psi : R' \to S^{-1}R$ with $\psi \circ \phi = id_R$,
▶ for a prime ideal $I' = \langle f_1, \dots, f_k \rangle$, write $\psi(f_i) = g_i/h_i$ and set $J = \langle g_i \rangle$.
If $I := \phi^{-1}(I') \in \text{Spec}(S^{-1}R/J)$, then $I = J : S$.

- ▶ For example, ϕ = parametrization of $\mathcal{M}(K_n)$, ψ = parameter identification map and l' = linear equations on parameters from missing edges and color classes.
- ► The lemma computes the vanishing ideal up to a saturation of rationally identifiable models with additional equation constraints

Lemma

▶ maps
$$\phi : R \to R'$$
 and $\psi : R' \to S^{-1}R$ with $\psi \circ \phi = id_R$,
▶ for a prime ideal $I' = \langle f_1, \dots, f_k \rangle$, write $\psi(f_i) = g_i/h_i$ and set $J = \langle g_i \rangle$.
If $I := \phi^{-1}(I') \in \text{Spec}(S^{-1}R/J)$, then $I = J : S$.

- ▶ For example, ϕ = parametrization of $\mathcal{M}(K_n)$, ψ = parameter identification map and l' = linear equations on parameters from missing edges and color classes.
- ► The lemma computes the vanishing ideal up to a saturation of rationally identifiable models with additional equation constraints → colored undirected graphical models. What else?

Lemma

▶ maps
$$\phi : R \to R'$$
 and $\psi : R' \to S^{-1}R$ with $\psi \circ \phi = id_R$,
▶ for a prime ideal $I' = \langle f_1, \dots, f_k \rangle$, write $\psi(f_i) = g_i/h_i$ and set $J = \langle g_i \rangle$.
If $I := \phi^{-1}(I') \in \text{Spec}(S^{-1}R/J)$, then $I = J : S$.

- ▶ For example, ϕ = parametrization of $\mathcal{M}(K_n)$, ψ = parameter identification map and l' = linear equations on parameters from missing edges and color classes.
- ► The lemma computes the vanishing ideal up to a saturation of rationally identifiable models with additional equation constraints → colored undirected graphical models. What else?
- Knowing a parametrization and generators for the vanishing ideal up to saturation is sufficient in practice for model distinguishability.

Lemma

▶ maps
$$\phi : R \to R'$$
 and $\psi : R' \to S^{-1}R$ with $\psi \circ \phi = id_R$,
▶ for a prime ideal $I' = \langle f_1, \dots, f_k \rangle$, write $\psi(f_i) = g_i/h_i$ and set $J = \langle g_i \rangle$.
If $I := \phi^{-1}(I') \in \text{Spec}(S^{-1}R/J)$, then $I = J : S$.

- ▶ For example, ϕ = parametrization of $\mathcal{M}(K_n)$, ψ = parameter identification map and l' = linear equations on parameters from missing edges and color classes.
- ► The lemma computes the vanishing ideal up to a saturation of rationally identifiable models with additional equation constraints → colored undirected graphical models. What else?
- Knowing a parametrization and generators for the vanishing ideal up to saturation is sufficient in practice for model distinguishability.
- ► Conceivable to extend to inequalities.

Fix a colored DAG (G, c) and $\Sigma \in \mathcal{M}(G, c)$.

 \triangleright Σ is faithful to G if it satisfies no more CI statements than the d-separations in G.

Fix a colored DAG (G, c) and $\Sigma \in \mathcal{M}(G, c)$.

- \blacktriangleright Σ is faithful to G if it satisfies no more CI statements than the d-separations in G.
- \triangleright Σ is faithful to *c* if it satisfies no more vcr or ecr relations than those from *c*.

Fix a colored DAG (G, c) and $\Sigma \in \mathcal{M}(G, c)$.

 \triangleright Σ is faithful to G if it satisfies no more CI statements than the d-separations in G.

 $\blacktriangleright \Sigma$ is faithful to c if it satisfies no more ver or ear relations than those from c.

Theorem ([WD23; STD10])

• Generic $\Sigma \in \mathcal{M}(G, c)$ is faithful to c.

Fix a colored DAG (G, c) and $\Sigma \in \mathcal{M}(G, c)$.

 \triangleright Σ is faithful to G if it satisfies no more CI statements than the d-separations in G.

 \triangleright Σ is faithful to *c* if it satisfies no more vcr or ecr relations than those from *c*.

Theorem ([WD23; STD10])

- Generic $\Sigma \in \mathcal{M}(G, c)$ is faithful to c.
- Generic $\Sigma \in \mathcal{M}(G, c)$ is faithful to G if c is a vertex-coloring or an edge-coloring.

Fix a colored DAG (G, c) and $\Sigma \in \mathcal{M}(G, c)$.

- \triangleright Σ is faithful to G if it satisfies no more CI statements than the d-separations in G.
- \triangleright Σ is faithful to *c* if it satisfies no more vcr or ecr relations than those from *c*.

Theorem ([WD23; STD10])

```
• Generic \Sigma \in \mathcal{M}(G, c) is faithful to c.
```

• Generic $\Sigma \in \mathcal{M}(G, c)$ is faithful to G if c is a vertex-coloring or an edge-coloring.

► The example on the right colors vertices and edges. The generic matrix in the model satisfies 1 ⊥⊥ 4 | 5. No faithful distribution!

Theorem ([WD23])

If (G, c) and (H, c) are vertex-colored DAGs, then $\mathcal{M}(G, c) = \mathcal{M}(H, c)$ if and only if G and H are Markov-equivalent and $pa_G(j) = pa_H(j)$ for all $j \in V$ with $|c^{-1}(j)| \ge 2$.

Theorem ([WD23])

If (G, c) and (H, c) are vertex-colored DAGs, then $\mathcal{M}(G, c) = \mathcal{M}(H, c)$ if and only if G and H are Markov-equivalent and $pa_G(j) = pa_H(j)$ for all $j \in V$ with $|c^{-1}(j)| \ge 2$.

Now let (G, c) and (H, d) be edge-colored DAGs with $\mathcal{M}(G, c) = \mathcal{M}(H, d)$.

Theorem ([WD23])

If (G, c) and (H, c) are vertex-colored DAGs, then $\mathcal{M}(G, c) = \mathcal{M}(H, c)$ if and only if G and H are Markov-equivalent and $pa_G(j) = pa_H(j)$ for all $j \in V$ with $|c^{-1}(j)| \ge 2$.

Now let (G, c) and (H, d) be edge-colored DAGs with $\mathcal{M}(G, c) = \mathcal{M}(H, d)$.

► G and H must have the same skeleton and v-structures because of faithfulness.

Theorem ([WD23])

If (G, c) and (H, c) are vertex-colored DAGs, then $\mathcal{M}(G, c) = \mathcal{M}(H, c)$ if and only if G and H are Markov-equivalent and $pa_G(j) = pa_H(j)$ for all $j \in V$ with $|c^{-1}(j)| \ge 2$.

Now let (G, c) and (H, d) be edge-colored DAGs with $\mathcal{M}(G, c) = \mathcal{M}(H, d)$.

- \blacktriangleright G and H must have the same skeleton and v-structures because of faithfulness.
- ► (G, c) and (H, d) are similar if whenever c(ij) = c(kl) in G, then $ij, kl \in E_H$ and d(ij) = d(kl). (Colored edges cannot flip.)

Theorem ([WD23])

If (G, c) and (H, c) are vertex-colored DAGs, then $\mathcal{M}(G, c) = \mathcal{M}(H, c)$ if and only if G and H are Markov-equivalent and $pa_G(j) = pa_H(j)$ for all $j \in V$ with $|c^{-1}(j)| \ge 2$.

Now let (G, c) and (H, d) be edge-colored DAGs with $\mathcal{M}(G, c) = \mathcal{M}(H, d)$.

- \blacktriangleright G and H must have the same skeleton and v-structures because of faithfulness.
- ▶ (G, c) and (H, d) are similar if whenever c(ij) = c(kl) in G, then $ij, kl \in E_H$ and d(ij) = d(kl). (Colored edges cannot flip.)

Theorem

If (G, c) and (H, d) are edge-colored DAGs, then $\mathcal{M}(G, c) = \mathcal{M}(H, d)$ implies that (G, c) and (H, d) are similar. In particular, if every edge is in a color class of size at least 2, edge directions are uniquely determined.

References

 [BKMS24] Tobias Boege, Kaie Kubjas, Pratik Misra, and Liam Solus. Colored Gaussian DAG models. 2024⁺.
 [RP14] Hajir Roozbehani and Yury Polyanskiy. Algebraic Methods of Classifying Directed Graphical Models. arXiv:1401.5551 [cs.IT]. 2014.
 [STD10] Seth Sullivant, Kelli Talaska, and Jan Draisma. "Trek separation for Gaussian graphical models". In: <u>Ann. Stat.</u> 38.3 (2010), pp. 1665–1685. ISSN: 0090-5364. DOI: 10.1214/09-A0S760.
 [WD23] Jun Wu and Mathias Drton. "Partial Homoscedasticity in Causal Discovery with Linear Models". In: IEEE Journal on Selected Areas in Information Theory (2023).