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Conditional independence X áY ∣ Z
“When does knowing Z make X irrelevant for Y ?”

Example: Two independent fair coins c1 and c2 are wired to a bell b which rings
if and only if c1 = c2.

▸ c1 á c2
▸ ¬(c1 á c2 ∣ b) . . .

Question: When can we conclude from some independences other independences?
E.g., is it possible that c1 á b?
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Graphical models
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Gaussian conditional independence

Assume ξ = (ξi ∶ i ∈ N) are jointly Gaussian with covariance matrix Σ ∈ PDN .

Definition

The polynomial Σ[K ] ∶= det ΣK ,K is a principal minor of Σ and Σ[ij ∣K ] ∶= det ΣiK ,jK

is an almost-principal minor.

▸ Σ is PD if and only if Σ[K ] > 0 for all K ⊆ N.

▸ [ξi á ξj ∣ ξK ] holds if and only if Σ[ij ∣K ] = 0.

▸ E[ξ] = µ is irrelevant.
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Very special polynomials

Σ[ij ∣ ] = xij

Σ[ij ∣ k] = xijxkk − xikxjk

Σ[ij ∣ kl] = xijxkkxll − xilxjlxkk + xilxjkxkl + xikxjlxkl − xijx
2
kl − xikxjkxll

Σ[ij ∣ klm] = xijxkkxllxmm + ximxjmx2
kl − ximxjlxklxkm − xilxjmxklxkm +

xilxjlx
2
km − ximxjmxkkxll + ximxjkxkmxll + xikxjmxkmxll −

xijx
2
kmxll + ximxjlxkkxlm + xilxjmxkkxlm − ximxjkxklxlm −

xikxjmxklxlm − xilxjkxkmxlm − xikxjlxkmxlm + 2xijxklxkmxlm +
xikxjkx2

lm − xijxkkx2
lm − xilxjlxkkxmm + xilxjkxklxmm +

xikxjlxklxmm − xijx
2
klxmm − xikxjkxllxmm

⋮
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Gaussian CI models

Definition

A CI constraint is a CI statement [ξi á ξj ∣ ξK ] or its negation ¬[ξi á ξj ∣ ξK ].
The model of a set of CI constraints is the set of all PD matrices which satisfy them.

Figure: Model of Σ[12 ∣3] = a − bc = 0 in the space of 3 × 3 correlation matrices.
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Basic questions

▸ How hard is it to decide if the model specification is inconsistent?

▸ How hard is it to certify consistency by showing a point in the model?

▸ What is the geometric structure of the models?

What is the model of [X áY ] ∧ [X á Z ∣ Y ] ∧ ¬[X áY ∣ Z ] ?
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Models and inference

Consider two sets of CI statements P and Q:

⋀P ⇒ ⋁Q

is not valid
⇐⇒

P ∪ ¬Q
has a point

Reasoning about CI statements in normally distributed random variables is
the same as reasoning about the vanishing of very special kinds of determinants
on very special kinds of varieties inside the positive definite matrices.
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For ancient geometers: conditional independence ≈ collinearity
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Normal form for proofs and refutations

Let fi ∈ Z[t1, . . . , tk] be integer polynomials in finitely many variables.

Theorem (Tarski’s transfer principle)

If a polynomial system {fi &i 0}, where &i ∈ {=, /=,<,≤,≥,>}, has a solution over R,
then it has a solution in a finite real extension of Q.

→ If ⋀P ⇒ ⋁Q is false, there exists a counterexample matrix Σ with algebraic entries.

[12 ∣ ] ∧ [12 ∣3]⇒ [13 ∣ ] is false and a counterexample is

⎛
⎜
⎝

1 0 1/2
0 1 0
1/2 0 1

⎞
⎟
⎠
.
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Normal form for proofs and refutations

Let fi ,gj ,hk ∈ Z[t1, . . . , tk] be integer polynomials in finitely many variables.

Theorem (Positivstellensatz)

A polynomial system {fi = 0,gj ≥ 0,hk /= 0} is infeasible if and only if there exist
f ∈ ideal(fi), g ∈ cone(gj) and h ∈ monoid(hk) such that g + h2 = f .

→ If ⋀P ⇒ ⋁Q is true, there exists an algebraic proof for it with integer coefficients.

[12 ∣ ] ∧ [12 ∣3]⇒ [13 ∣ ] ∨ [23 ∣ ] is true and a proof is the final polynomial

Σ[13 ∣ ] ⋅Σ[23 ∣ ] = Σ[3] ⋅Σ[12 ∣ ] −Σ[12 ∣3].
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Computer algebra proves laws of probabilistic reasoning

The following inference rule is valid for all positive definite 5 × 5 matrices:

[12 ∣ ]∧[14 ∣5]∧[23 ∣5]∧[35 ∣1]∧[45 ∣2]∧[15 ∣23]∧[34 ∣12]∧[24 ∣135] ⇒ [25 ∣ ]∨[34 ∣ ].

[25 ∣ ][34 ∣ ] ⋅ [1][2][3][15] =
(cd2egr + bd2fgr − ad2grh − 2cd2e2i − 2bd2efi − 2pdfgri + 2ad2ehi + 2pdefi2 − 2pdqhi2 + 2pcqi3 +

2pdqrij − 2pbqi2j − pcegrt + pbfgrt + pagrht + 2pce2it − 2pcqrit + 2pbqhit − 2paehit) ⋅ [12 ∣ ] +
(pdqer + pbqgr − 2pbqei) ⋅ [14 ∣5] − (pcdqr + p2fgr − 2pbcqi + 2pb2qj − 2p2qrj) ⋅ [23 ∣5] +

(cdqgr − 2cdqei + 2pqghi − 2pqfi2 − pqgrj + 2pqeij − 2pe2ft + 2pqfrt) ⋅ [35 ∣1] +
(pd2er − 2pbdei + p2gri + 2pb2et − 2p2ert) ⋅ [45 ∣2] − (2pdfi − 2pbft) ⋅ [15 ∣23] −

(d2gr − 2d2ei − pgrt + 2peit) ⋅ [34 ∣12] − 2pqi ⋅ [24 ∣135].
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Computer algebra proves laws of probabilistic reasoning

R = QQ[p,a,b,c,d, q,e,f,g, r,h,i, s,j, t];

X = genericSymmetricMatrix(R,p,5);

I = ideal(

det X_{0}^{1}, det X_{0,3}^{2,3}, det X_{0,4}^{3,4},

det X_{1,4}^{2,4}, det X_{2,0}^{4,0}, det X_{3,1}^{4,1},

det X_{0,1,2}^{4,1,2}, det X_{2,0,1}^{3,0,1},

det X_{1,0,2,4}^{3,0,2,4}

);

U = g*h*p*q*r*(p*t-d^2); -- [25 ∣ ][34 ∣ ] ⋅ [1][2][3][15] ∈ monoid(V)
U % I --> 0, meaning monoid(V) ∩ ideal(V) /= ∅ in Q[X]
-- Get a proof that U is in I:

G = gens I; -- the equations generating ideal(V)
H = U // G; -- linear combinators for U from G

U == G*H --> true



12 / 17

Consistency checking is hard

The complexity class ∃R contains all decision problems which can be reduced in
polynomial time to the feasibility of a semialgebraic set:

▸ polynomial optimization
▸ computational geometry
▸ algebraic statistics . . .

Theorem

The problem of deciding whether a general CI model is non-empty is complete for ∃R.

(Graphical models are always consistent.)
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Certification of consistency

Petr Šimeček. “Gaussian representation of independence models over four random variables”.

In: COMPSTAT conference. 2006
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Consistency certification is hard

Šimeček’s Question (2006)

Does every non-empty Gaussian CI model contain a rational point?

Or: can every wrong inference rule be refuted over Q?
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Does every non-empty Gaussian CI model contain a rational point?

Or: can every wrong inference rule be refuted over Q?

⎛
⎜⎜⎜
⎝

1 −1/17 −49/51 −7/17
−1/17 1 1/3 1/7
−49/51 1/3 1 3/7
−7/17 1/7 3/7 1

⎞
⎟⎟⎟
⎠
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Consistency certification is hard

Šimeček’s Question (2006)

Does every non-empty Gaussian CI model contain a rational point?

Or: can every wrong inference rule be refuted over Q?

Theorem

For every finite real extension K of Q there exists a CI model M such that
M ∩ PDN(K) /= ∅ but M ∩ PDN(L) = ∅ for all proper subfields L ⊊ K.

(Graphical models always have rational points.)
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Model topology can be bad

An oriented CI model is specified by sign constraints on partial correlations.

Theorem

For every primary basic semialgebraic set Z there exists an oriented CI model M
which is homotopy-equivalent to Z .

(Graphical models are always contractible.)
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Universality theorems

Integer
polynomials

Incidence
geometry

Conditional
independence

Universality

von Staudt 1857 (∗)
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Universality theorems

Integer
polynomials

Incidence
geometry

Conditional
independence

Universality

von Staudt 1857 (∗)

▸ Realization spaces of rank-3 matroids

▸ Realization spaces of 4-polytopes

▸ Nash equilibria of 3-person games

▸ Gaussian CI models with conditioning sets of size up to 3 . . .
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Petr Šimeček. “Gaussian representation of independence models over four
random variables”. In: COMPSTAT conference. 2006.



Universality theorems: Background

Integer
polynomials

Incidence
geometry

Conditional
independence

Universality

von Staudt 1857 (∗)

Theorem

To every polynomial system {fi & 0} there is a set of CI constraints which has a model
over a field K/Q if and only if the polynomial system has a solution in K.



Very special polynomials

Σ[ij ∣ ] = xij → impose xkl = xkm = xlm = 0 on a correlation matrix, then:

Σ[ij ∣ klm] = xijxkkxllxmm + ximxjmx2
kl − ximxjlxklxkm − xilxjmxklxkm + xilxjlx

2
km

− ximxjmxkkxll + ximxjkxkmxll + xikxjmxkmxll − xijx
2
kmxll

+ ximxjlxkkxlm + xilxjmxkkxlm − ximxjkxklxlm − xikxjmxklxlm

− xilxjkxkmxlm − xikxjlxkmxlm + 2xijxklxkmxlm + xikxjkx2
lm

− xijxkkx2
lm − xilxjlxkkxmm + xilxjkxklxmm + xikxjlxklxmm

− xijx
2
klxmm − xikxjkxllxmm

= xij − ∑
k=k,l ,m

xikxjk = xij − ⟨(
xik
xil
xim

),(
xjk
xjl
xjm

)⟩ .

The rest is 19th century projective geometry. Keyword: von Staudt constructions.



Covariance matrix simulating a projective plane

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p1 ⋯ pn l1 ⋯ lm x y z

p1 p∗1 ⟨p,p′⟩ px
1 py

1 pz
1

⋮ ⋱ ⟨p, `⟩ ⋮
pn ⟨p′,p⟩ p∗n px

n py
n pz

n

l1 `∗1 ⟨`, `′⟩ `x1 `y1 `z1
⋮ ⟨`,p⟩ ⋱ ⋮
lm ⟨`′, `⟩ `∗m `xm `ym `zm
x px

1 px
n `x1 `xm x∗ 0 0

y py
1 ⋯ py

n `y1 ⋯ `ym 0 y∗ 0
z pz

1 pz
n `z1 `zm 0 0 z∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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