Incidence geometry, conditional independence and the existential theory of the reals

Tobias Boege

Logic seminar University of Helsinki 16 November 2022

$$
\blacktriangleright x^2 + y^2 = \frac{3}{2}
$$

- $x^2 + y^2 = 3/2$
- ▸ Ubiquitous in mathematical modeling.

- $x^2 + y^2 = 3/2$
- ▸ Ubiquitous in mathematical modeling.
- ▸ Lots of structure but practically challenging.

- $x^2 + y^2 = 3/2$
- ▸ Ubiquitous in mathematical modeling.
- ▸ Lots of structure but practically challenging.
- ▸ Computer algebra allows experimentation.

- $x^2 + y^2 = 3/2$
- ▸ Ubiquitous in mathematical modeling.
- ▸ Lots of structure but practically challenging.
- ▸ Computer algebra allows experimentation.
- ▸ Atomic formulas in the language of rings.

Systems of polynomial equations:

- $x^2 + y^2 = 3/2$
- ▸ Ubiquitous in mathematical modeling.
- ▸ Lots of structure but practically challenging.
- ▸ Computer algebra allows experimentation.
- ▸ Atomic formulas in the language of rings.

The first-order theory of algebraically closed fields has quantifier elimination in the language of rings.

Systems of polynomial equations:

- $x^2 + y^2 = 3/2$
- ▸ Ubiquitous in mathematical modeling.
- ▸ Lots of structure but practically challenging.
- ▸ Computer algebra allows experimentation.
- ▸ Atomic formulas in the language of rings.

The first-order theory of algebraically closed fields has quantifier elimination in the language of rings.

But algebraic statistics, polynomial optimization, computational geometry, . . . need the real numbers.

Systems of polynomial equations:

- $x^2 + y^2 = 3/2$
- ▸ Ubiquitous in mathematical modeling.
- ▸ Lots of structure but practically challenging.
- ▸ Computer algebra allows experimentation.
- ▸ Atomic formulas in the language of rings.

The first-order theory of algebraically closed fields has quantifier elimination in the language of rings.

But algebraic statistics, polynomial optimization, computational geometry, . . . need the real numbers.

The feasibility problem in $(\mathbb{R}, +, \cdot, <, 0, 1)$

Tarski–Seidenberg Theorem

Real-closed fields have quantifier elimination in the language of ordered rings.

The definable sets in this language are the semialgebraic sets.

The feasibility problem in $(\mathbb{R}, +, \cdot, <, 0, 1)$

Tarski–Seidenberg Theorem

Real-closed fields have quantifier elimination in the language of ordered rings.

The definable sets in this language are the semialgebraic sets.

The feasibility problem ETR

Given a quantifier-free formula, decide if it is satisfiable in R*. Equivalently: decide if an explicitly given semialgebraic set is inhabited.*

The feasibility problem in $(\mathbb{R}, +, \cdot, <, 0, 1)$

Tarski–Seidenberg Theorem

Real-closed fields have quantifier elimination in the language of ordered rings.

The definable sets in this language are the semialgebraic sets.

The feasibility problem ETR

Given a quantifier-free formula, decide if it is satisfiable in R*. Equivalently: decide if an explicitly given semialgebraic set is inhabited.*

 $x^2 + y^2 = 0 \land x < y$?

The complexity class ∃ℝ consists of all decision problems which (many-one) reduce to ETR in polynomial time. Input length is formula length*. Canny (1988): ETR [∈] PSPACE.

Lemma

The special case of ETR *for varieties (conjunctions of equations) is* ∃R*-complete.*

Proof.

Given any boolean combination of polynomial constraints $f \bowtie 0$ with $\bowtie \in \{=\neq,<\leq,\geq,\geq\}$:

The complexity class ∃ℝ consists of all decision problems which (many-one) reduce to ETR in polynomial time. Input length is formula length*. Canny (1988): ETR [∈] PSPACE.

Lemma

The special case of ETR *for varieties (conjunctions of equations) is* ∃R*-complete.*

Proof.

Given any boolean combination of polynomial constraints $f \bowtie 0$ with $\bowtie \in \{=\neq,<\leq,\geq,\geq\}$:

▸ Use the Tseitin transform to derive a CNF for it.

The complexity class ∃ℝ consists of all decision problems which (many-one) reduce to ETR in polynomial time. Input length is formula length*. Canny (1988): ETR [∈] PSPACE.

Lemma

The special case of ETR *for varieties (conjunctions of equations) is* ∃R*-complete.*

Proof.

Given any boolean combination of polynomial constraints $f \bowtie 0$ with $\bowtie \in \{=\neq,<\leq,\geq,\geq\}$:

- ▸ Use the Tseitin transform to derive a CNF for it.
- ► Replace $f \neq 0 \to yf = 1$, $f > 0 \to y^2f = 1$ and $f \ge 0 \to f = y^2$.

The complexity class ∃ℝ consists of all decision problems which (many-one) reduce to ETR in polynomial time. Input length is formula length*. Canny (1988): ETR [∈] PSPACE.

Lemma

The special case of ETR *for varieties (conjunctions of equations) is* ∃R*-complete.*

Proof.

Given any boolean combination of polynomial constraints $f \bowtie 0$ with $\bowtie \in \{=\neq,<\leq,\geq,\geq\}$:

- ▸ Use the Tseitin transform to derive a CNF for it.
- ► Replace $f \neq 0 \to yf = 1$, $f > 0 \to y^2f = 1$ and $f \ge 0 \to f = y^2$.
- ► Dissolve disjunctions $\bigvee_i [f_i = 0]$ into $\bigwedge_i [y_i = f_i] \wedge [\prod_i y_i = 0].$

П

The projective plane over $\mathbb R$ is the space $\mathbb P^2$ which extends the affine plane $\mathbb R^2$ by a line at infinity. A point $p \in \mathbb{P}^2$ is given by its homogeneous coordinates $p = [x : y : z]$:

- ▸ Not all of *x*, *y*, *z* are zero, and
- ► $[x:y:z] = [\lambda x: \lambda y: \lambda z]$ for $\lambda \neq 0$.

The projective plane over $\mathbb R$ is the space $\mathbb P^2$ which extends the affine plane $\mathbb R^2$ by a line at infinity. A point $p \in \mathbb{P}^2$ is given by its homogeneous coordinates $p = [x : y : z]$:

- ▸ Not all of *x*, *y*, *z* are zero, and
- ► $[x:y:z] = [\lambda x: \lambda y: \lambda z]$ for $\lambda \neq 0$.

A triple of homogeneous coordinates $[a:b:c]$ dually also represents a line in \mathbb{P}^2 with the equation $ax + by + cz = 0$.

The projective plane over $\mathbb R$ is the space $\mathbb P^2$ which extends the affine plane $\mathbb R^2$ by a line at infinity. A point $p \in \mathbb{P}^2$ is given by its homogeneous coordinates $p = [x : y : z]$:

- ▸ Not all of *x*, *y*, *z* are zero, and
- ► $[x:y:z] = [\lambda x: \lambda y: \lambda z]$ for $\lambda \neq 0$.

A triple of homogeneous coordinates $[a:b:c]$ dually also represents a line in \mathbb{P}^2 with the equation $ax + by + cz = 0$.

In the projective plane...

Every pair of distinct points p, p′ *has a unique line p* ∨ *p* ′ *which contains them both. Every pair of distinct lines* ℓ , ℓ' has a unique point $\ell \wedge \ell'$ which lies on both of them.

Both, \vee and \wedge , are the cross product \times in \mathbb{R}^3 operating on homogeneous coordinates.

Let $p = [x : y : z]$ be a point and $\ell = [a : b : c]$ be a line. Then *p* lies on ℓ if and only if $0 = \langle p, \ell \rangle = ax + by + cz$.

Let $p = [x : y : z]$ be a point and $\ell = [a : b : c]$ be a line. Then *p* lies on ℓ if and only if $0 = \langle p, \ell \rangle = ax + by + cz$.

An incidence structure is a combinatorial object consisting of

- \triangleright finitely many (labels for) points \mathcal{P} ,
- \triangleright finitely many (labels for) lines \mathcal{L} , and
- **►** a set $\mathcal I$ of incidence constraints $p \in \ell$ or $p \notin \ell$ for some $p \in \mathcal P$ and $\ell \in \mathcal L$.

We assume that there are four points in P no three of which are collinear. They form a projective basis.

Let $p = [x : y : z]$ be a point and $\ell = [a : b : c]$ be a line. Then *p* lies on ℓ if and only if $0 = \langle p, \ell \rangle = ax + by + cz$.

An incidence structure is a combinatorial object consisting of

- \triangleright finitely many (labels for) points \mathcal{P} ,
- \triangleright finitely many (labels for) lines \mathcal{L} , and
- **►** a set $\mathcal I$ of incidence constraints $p \in \ell$ or $p \notin \ell$ for some $p \in \mathcal P$ and $\ell \in \mathcal L$.

We assume that there are four points in P no three of which are collinear. They form a projective basis.

Realizability problem for incidence structures PLR

Given an incidence structure, decide if it can be realized in \mathbb{P}^2 .

PLR is not straightforward

A technique for ∃R**-completeness**

The coordinates of all points in $\mathcal P$ and of all lines in $\mathcal L$ are finitely many variables and we have (short!) polynomial equations ($p \in \ell$) and inequations ($p \notin \ell$) in them:

PLR [∈] [∃]R.

A technique for ∃R**-completeness**

The coordinates of all points in $\mathcal P$ and of all lines in $\mathcal L$ are finitely many variables and we have (short!) polynomial equations ($p \in \ell$) and inequations ($p \notin \ell$) in them:

PLR $\in \exists \mathbb{R}$.

Theorem (von Staudt 1857)

PLR *is* ∃R*-complete.*

Recall: It suffices to reduce the variety case of ETR. We will show how to encode one polynomial equation $f = 0$ as an incidence structure.

A technique for ∃R**-completeness**

The coordinates of all points in $\mathcal P$ and of all lines in $\mathcal L$ are finitely many variables and we have (short!) polynomial equations ($p \in \ell$) and inequations ($p \notin \ell$) in them:

PLR $\in \exists \mathbb{R}$.

Theorem (von Staudt 1857)

PLR *is* ∃R*-complete.*

Recall: It suffices to reduce the variety case of ETR. We will show how to encode one polynomial equation $f = 0$ as an incidence structure. In fact, the polynomials $z = x + y$ and $z = x \cdot y$ are sufficient.

Where is Waldo?

Where is Waldo? On the cube root of 4!

▸ PLR is ∃R-complete.

- ▸ PLR is ∃R-complete.
- \triangleright Solving systems consisting only of equations of the form $x = 0$, $x = 1$ or $\langle p, \ell \rangle = ax + by + cz = 0$ is $\exists \mathbb{R}$ -complete.

- ▸ PLR is ∃R-complete.
- \triangleright Solving systems consisting only of equations of the form $x = 0$, $x = 1$ or $\langle p, \ell \rangle = ax + by + cz = 0$ is $\exists \mathbb{R}$ -complete.
- \triangleright Solving systems consisting only of equations of the form $x = 0$, $x = 1$ or

$$
\langle p, q \times r \rangle = \det \begin{pmatrix} p_x & q_x & r_x \\ p_y & q_y & r_y \\ p_z & q_z & r_z \end{pmatrix} = 0
$$

is $\exists \mathbb{R}$ -complete. \rightarrow matroid theory

- ▸ PLR is ∃R-complete.
- \triangleright Solving systems consisting only of equations of the form $x = 0$, $x = 1$ or $\langle p, \ell \rangle = ax + by + cz = 0$ is $\exists \mathbb{R}$ -complete.
- \triangleright Solving systems consisting only of equations of the form $x = 0$, $x = 1$ or

$$
\langle p, q \times r \rangle = \det \begin{pmatrix} p_x & q_x & r_x \\ p_y & q_y & r_y \\ p_z & q_z & r_z \end{pmatrix} = 0
$$

is $\exists \mathbb{R}$ -complete. \rightarrow matroid theory

▸ Other examples, see Miltzow and Schmiermann (2021).

Example: Two independent fair coins c_1 and c_2 are wired to a bell *b* which rings if and only if $c_1 = c_2$.

Example: Two independent fair coins c_1 and c_2 are wired to a bell *b* which rings if and only if $c_1 = c_2$.

 \triangleright $C_1 \perp \!\!\! \perp C_2$

Example: Two independent fair coins c_1 and c_2 are wired to a bell *b* which rings if and only if $c_1 = c_2$.

- \triangleright $C_1 \perp C_2$
- \rightarrow ¬(*c*₁ \perp *c*₂ | *b*) ...

Example: Two independent fair coins c_1 and c_2 are wired to a bell *b* which rings if and only if $c_1 = c_2$.

- \triangleright $C_1 \perp \!\!\! \perp C_2$
- \triangleright ¬(*c*₁ \perp *c*₂ | *b*) ...

Question: When can we conclude from some independences other independences? E.g., is it possible that $c_1 \perp b$?

Gaussian conditional independence

Assume $\xi = (\xi_i : i \in \mathbb{N})$ are jointly Gaussian with covariance matrix $\Sigma \in \mathsf{PD}_\mathbb{N}$.

Definition

The polynomial $\Sigma[K]$:= det $\Sigma_{K,K}$ is a *principal minor* of Σ and $\Sigma[i|K]$:= det $\Sigma_{iK,iK}$ is an *almost-principal minor*.

Algebraic statistics proves:

- \triangleright Σ is PD if and only if $\Sigma[K] > 0$ for all $K \subseteq N$.
- ► $[\xi_i \perp \xi_j | \xi_K]$ holds if and only if $\Sigma[i|K] = 0$.
- $\mathbb{E}[\xi] = \mu$ is irrelevant.

Very special polynomials

$$
\sum [ij |] = x_{ij}
$$
\n
$$
\sum [ij |k] = x_{ij}x_{kk} - x_{ik}x_{jk}
$$
\n
$$
\sum [ij |kl] = x_{ij}x_{kk}x_{ll} - x_{ik}x_{jk}x_{kk} + x_{il}x_{jk}x_{kl} + x_{ik}x_{jl}x_{kl} - x_{ij}x_{kl}^2 - x_{ik}x_{jk}x_{ll}
$$
\n
$$
\sum [ij |klm] = x_{ij}x_{kk}x_{ll}x_{mm} + x_{im}x_{jm}x_{kl}^2 - x_{im}x_{jl}x_{kl}x_{km} - x_{il}x_{jm}x_{kl}x_{km} + x_{il}x_{jl}x_{km}^2 - x_{im}x_{jm}x_{kk}x_{ll} + x_{im}x_{jl}x_{km}x_{ll} - x_{il}x_{jl}x_{km}^2 - x_{im}x_{jm}x_{kk}x_{lm} + x_{il}x_{jm}x_{kk}x_{lm} - x_{im}x_{jk}x_{kl}x_{lm} - x_{ik}x_{jl}x_{kl}x_{km} - x_{ik}x_{jl}x_{kl}x_{km} - x_{ik}x_{jk}x_{kl}x_{km} + x_{ik}x_{jk}x_{km}^2 - x_{jl}x_{jk}x_{kk}x_{lm}^2 - x_{il}x_{jl}x_{kk}x_{mm} - x_{il}x_{jk}x_{kl}x_{mm} + x_{ik}x_{jl}x_{kl}x_{mm} - x_{ik}x_{jl}x_{kk}x_{mm} - x_{il}x_{jk}x_{kl}x_{mm} - x_{ik}x_{jk}x_{kl}x_{mm}
$$
\n
$$
\vdots
$$

Gaussian CI models

Definition

A *CI* constraint is a CI statement $[\xi_i \perp \xi_j | \xi_K]$ or its negation $\neg[\xi_i \perp \xi_j | \xi_K]$. The *model* of a set of CI constraints is the set of all PD matrices which satisfy them.

Figure: Model of Σ [12|3] = $a - bc = 0$ in the space of 3×3 correlation matrices.

Inference problem for Gaussian conditional independence GCI

Given a clause $\land \mathcal{P} \Rightarrow \lor \mathcal{Q}$, where \mathcal{P} and \mathcal{Q} are sets of CI statements over N, *decide if it is valid for all N-variate Gaussians.*

 $\Lambda \mathcal{P} \Rightarrow \bigvee \mathcal{Q}$

Inference problem for Gaussian conditional independence GCI

Given a clause $\land \mathcal{P} \Rightarrow \lor \mathcal{Q}$, where \mathcal{P} and \mathcal{Q} are sets of CI statements over N, *decide if it is valid for all N-variate Gaussians.*

$$
\begin{array}{ccc}\n\bigwedge \mathcal{P} \Rightarrow \bigvee \mathcal{Q} & & \mathcal{M}(\mathcal{P} \cup \neg \mathcal{Q}) \\
\text{is not valid} & & \text{has a point}\n\end{array}
$$

Example of CI inference

$$
\Sigma = \begin{pmatrix} 1 & a & b \\ a & 1 & c \\ b & c & 1 \end{pmatrix}
$$

 \triangleright If Σ [12|] = *a* and Σ [12|3] = *a* − *bc* vanish, then $bc = \sum [13] \cdot \sum [23]$ must vanish:

 $[12] \wedge [12] \rightarrow [13] \vee [23]$.

The GCI problem is as hard as it could possibly be:

Theorem

GCI *is* ∀R*-complete where* ∀R *abbreviates co-*∃R*.*

The GCI problem is as hard as it could possibly be:

Theorem

GCI *is* ∀R*-complete where* ∀R *abbreviates co-*∃R*.*

Proof.

Both parts require care!

The GCI problem is as hard as it could possibly be:

Theorem

GCI *is* ∀R*-complete where* ∀R *abbreviates co-*∃R*.*

Proof.

Both parts require care!

▸ To show containment in ∀R, we have to show that an *n* × *n* determinant of a symmetric matrix can be computed by a polynomially-sized polynomial system.

The GCI problem is as hard as it could possibly be:

Theorem

GCI *is* ∀R*-complete where* ∀R *abbreviates co-*∃R*.*

Proof.

Both parts require care!

- ▸ To show containment in ∀R, we have to show that an *n* × *n* determinant of a symmetric matrix can be computed by a polynomially-sized polynomial system.
- **►** The hardness proof is more interesting! We express $\langle p, \ell \rangle$ using $\Sigma[i|K]$.

Condensed almost-principal minor

Suppose $x_{xx} = x_{yy} = x_{zz} = 1$ (in a correlation matrix) and $x_{xy} = x_{xz} = x_{yz} = 0$: ^Σ[*ij* ∣] ⁼ *^xij* $\Sigma [ij | xyz] = x_{ij}x_{xx}x_{yy}x_{zz} + x_{iz}x_{jz}\frac{x_{xy}^2}{x_{xy}} - x_{iz}x_{jy}\frac{x_{xy}x_{xz}}{x_{zx}} - x_{iy}x_{jz}\frac{x_{xy}x_{xz}}{x_{zx}} + x_{iy}x_{jy}\frac{x_{xz}^2}{x_{zx}}$ - $x_{iz}x_{jz}x_{xx}x_{yy} + x_{iz}x_{jx}\frac{x_{xz}}{x_{yy}} + x_{ix}x_{jz}\frac{x_{xz}}{x_{yy}} - x_{ij}x_{xz}^2x_{yy}$ + $X_{1Z}X_{1Y}X_{XX}X_{VZ}$ + $X_{1Y}X_{1Z}X_{XX}X_{VZ}$ - $X_{1Z}X_{1X}X_{XY}X_{VZ}$ - $X_{1X}X_{1Z}X_{XV}X_{VZ}$ $- x_{iy}x_{jx}x_{xz}x_{yz} - x_{ix}x_{jy}x_{xz}x_{yz} + 2x_{ij}x_{xy}x_{xz}x_{yz} + x_{ix}x_{jx}x_{yz}^2$ $- x_{ij}x_{xx}x_{yz}^2 - x_{iy}x_{jy}x_{xx}x_{zz} + x_{iy}x_{jx}x_{xy}x_{zz} + x_{ix}x_{jy}x_{xy}x_{zz}$ − *xijx* 2 *xy ^xzz* − *^xix ^xjx ^xyy ^xzz* $= x_{ij} - \sum_{k = v, v, z} x_{ik} x_{jk} = x_{ij} - \langle p, \ell \rangle.$ *k*=*x*,*y*,*z*

Incidence geometry as conditional independence

Universality theorems

More than computational complexity travels along those arcs!

Certification of consistency

Petr Šimeček. "Gaussian representation of independence models over four random variables". In: *COMPSTAT conference*. 2006

Šimeček's Question (2006)

Does every non-empty Gaussian CI model contain a rational point?

Or: can every wrong inference rule be refuted over Q?

Šimeček's Question (2006)

Does every non-empty Gaussian CI model contain a rational point?

Or: can every wrong inference rule be refuted over Q?

Model M85	Where:			
1	a	b	c	$a = \frac{100}{632836} \sqrt{1107463}$,
a	1	d	e	$b = 10c = \frac{100}{158209} \sqrt{1107463}$
b	d	1	f	
c	e	f	1	$d = 10e = \frac{3}{4}, f = \frac{1}{10}$

\n**2**

\n**3**

\n**4**

\n**5**

\n**5**

\n**6**

\n**6**

\n**7**

\n**8**

\n**9**

\n**1**

\n**10**

\n**11**

\n**13**

\n**14**

\n**15**

\n**16**

\n**17**

\n**18**

\n**19**

\n**10**

\n**11**

\n**13**

\n**14**

\n**15**

\n**16**

\n**17**

\n**18**

\n**19**

\n**10**

\n**10**

\n**11**

\n**13**

\n**14**

\n**15**

\n**16**

\n**17**

\n**18**

\n**19**

\n**10**

\n**10**

\n**11**

\

Šimeček's Question (2006)

Does every non-empty Gaussian CI model contain a rational point?

Or: can every wrong inference rule be refuted over Q?

Theorem

For every finite real extension ^K *of* ^Q *there exists a CI model* ^M *such that* $M \cap \text{PD}_N(\mathbb{K}) \neq \emptyset$ *but* $M \cap \text{PD}_N(\mathbb{L}) = \emptyset$ *for all proper subfields* $\mathbb{L} \varphi \mathbb{K}$ *.*

References

F

F

F

R

F

Tobias Boege. "The Gaussian conditional independence inference problem". PhD thesis. OvGU Magdeburg, 2022.

- Jürgen Bokowski and Bernd Sturmfels. *Computational synthetic geometry*. Vol. 1355. Lecture Notes in Mathematics. Springer, 1989.
	- Tillmann Miltzow and Reinier F. Schmiermann. *On Classifying Continuous Constraint Satisfaction Problems*. 2021. DOI: [10.48550/ARXIV.2106.02397](https://doi.org/10.48550/ARXIV.2106.02397). URL: <https://arxiv.org/abs/2106.02397>.
- Jürgen Richter-Gebert. *Perspectives on projective geometry. A guided tour through real and complex geometry*. Springer, 2011, pp. xxii + 571.
- Petr Šimeček. "Gaussian representation of independence models over four random variables". In: *COMPSTAT conference*. 2006.