Incidence geometry, conditional independence and the existential theory of the reals

Tobias Boege

Logic seminar University of Helsinki 16 November 2022

•
$$x^2 + y^2 = 3/2$$

- ► $x^2 + y^2 = 3/2$
- Ubiquitous in mathematical modeling.

- ► $x^2 + y^2 = 3/2$
- Ubiquitous in mathematical modeling.
- Lots of structure but practically challenging.

- ► $x^2 + y^2 = 3/2$
- Ubiquitous in mathematical modeling.
- Lots of structure but practically challenging.
- Computer algebra allows experimentation.

- ► $x^2 + y^2 = 3/2$
- Ubiquitous in mathematical modeling.
- Lots of structure but practically challenging.
- Computer algebra allows experimentation.
- Atomic formulas in the language of rings.

Systems of polynomial equations:

- ► $x^2 + y^2 = 3/2$
- Ubiquitous in mathematical modeling.
- Lots of structure but practically challenging.
- Computer algebra allows experimentation.
- Atomic formulas in the language of rings.

The first-order theory of algebraically closed fields has quantifier elimination in the language of rings.

Systems of polynomial equations:

- ► $x^2 + y^2 = 3/2$
- Ubiquitous in mathematical modeling.
- Lots of structure but practically challenging.
- Computer algebra allows experimentation.
- Atomic formulas in the language of rings.

The first-order theory of algebraically closed fields has quantifier elimination in the language of rings.

But algebraic statistics, polynomial optimization, computational geometry, ... need the real numbers.

Systems of polynomial equations:

- ► $x^2 + y^2 = 3/2$
- Ubiquitous in mathematical modeling.
- Lots of structure but practically challenging.
- Computer algebra allows experimentation.
- Atomic formulas in the language of rings.

The first-order theory of algebraically closed fields has quantifier elimination in the language of rings.

But algebraic statistics, polynomial optimization, computational geometry, ... need the real numbers.

The feasibility problem in $(\mathbb{R}, +, \cdot, <, 0, 1)$

Tarski–Seidenberg Theorem

Real-closed fields have quantifier elimination in the language of ordered rings.

The definable sets in this language are the semialgebraic sets.

The feasibility problem in $(\mathbb{R}, +, \cdot, <, 0, 1)$

Tarski–Seidenberg Theorem

Real-closed fields have quantifier elimination in the language of ordered rings.

The definable sets in this language are the semialgebraic sets.

The feasibility problem ETR

Given a quantifier-free formula, decide if it is satisfiable in \mathbb{R} . Equivalently: decide if an explicitly given semialgebraic set is inhabited.

The feasibility problem in $(\mathbb{R}, +, \cdot, <, 0, 1)$

Tarski–Seidenberg Theorem

Real-closed fields have quantifier elimination in the language of ordered rings.

The definable sets in this language are the semialgebraic sets.

The feasibility problem ETR

Given a quantifier-free formula, decide if it is satisfiable in \mathbb{R} . Equivalently: decide if an explicitly given semialgebraic set is inhabited.

 $x^2 + y^2 = 0 \land x < y$?

The complexity class $\exists \mathbb{R}$ consists of all decision problems which (many-one) reduce to ETR in polynomial time. Input length is formula length^{*}. Canny (1988): ETR \in PSPACE.

Lemma

The special case of ETR for varieties (conjunctions of equations) is $\exists \mathbb{R}$ -complete.

Proof.

Given any boolean combination of polynomial constraints $f \bowtie 0$ with $\bowtie \in \{=, \neq, <, \leq, \geq, >\}$:

The complexity class $\exists \mathbb{R}$ consists of all decision problems which (many-one) reduce to ETR in polynomial time. Input length is formula length^{*}. Canny (1988): ETR \in PSPACE.

Lemma

The special case of ETR for varieties (conjunctions of equations) is $\exists \mathbb{R}$ -complete.

Proof.

Given any boolean combination of polynomial constraints $f \bowtie 0$ with $\bowtie \in \{=, \neq, <, \leq, \geq, >\}$:

Use the Tseitin transform to derive a CNF for it.

The complexity class $\exists \mathbb{R}$ consists of all decision problems which (many-one) reduce to ETR in polynomial time. Input length is formula length^{*}. Canny (1988): ETR \in PSPACE.

Lemma

The special case of ETR for varieties (conjunctions of equations) is $\exists \mathbb{R}$ -complete.

Proof.

Given any boolean combination of polynomial constraints $f \bowtie 0$ with $\bowtie \in \{=, \neq, <, \leq, \geq, >\}$:

- ▶ Use the Tseitin transform to derive a CNF for it.
- Replace $f \neq 0 \rightarrow yf = 1$, $f > 0 \rightarrow y^2 f = 1$ and $f \ge 0 \rightarrow f = y^2$.

The complexity class $\exists \mathbb{R}$ consists of all decision problems which (many-one) reduce to ETR in polynomial time. Input length is formula length^{*}. Canny (1988): ETR \in PSPACE.

Lemma

The special case of ETR for varieties (conjunctions of equations) is $\exists \mathbb{R}$ -complete.

Proof.

Given any boolean combination of polynomial constraints $f \bowtie 0$ with $\bowtie \in \{=, \neq, <, \leq, \geq, >\}$:

- ► Use the Tseitin transform to derive a CNF for it.
- Replace $f \neq 0 \rightarrow yf = 1$, $f > 0 \rightarrow y^2 f = 1$ and $f \ge 0 \rightarrow f = y^2$.
- Dissolve disjunctions $\bigvee_i [f_i = 0]$ into $\bigwedge_i [y_i = f_i] \land [\prod_i y_i = 0]$.

The projective plane over \mathbb{R} is the space \mathbb{P}^2 which extends the affine plane \mathbb{R}^2 by a line at infinity. A point $p \in \mathbb{P}^2$ is given by its homogeneous coordinates p = [x : y : z]:

- ▶ Not all of *x*, *y*, *z* are zero, and
- $[x:y:z] = [\lambda x:\lambda y:\lambda z]$ for $\lambda \neq 0$.

The projective plane over \mathbb{R} is the space \mathbb{P}^2 which extends the affine plane \mathbb{R}^2 by a line at infinity. A point $p \in \mathbb{P}^2$ is given by its homogeneous coordinates p = [x : y : z]:

- ▶ Not all of *x*, *y*, *z* are zero, and
- $[x:y:z] = [\lambda x:\lambda y:\lambda z]$ for $\lambda \neq 0$.

A triple of homogeneous coordinates [a:b:c] dually also represents a line in \mathbb{P}^2 with the equation ax + by + cz = 0.

The projective plane over \mathbb{R} is the space \mathbb{P}^2 which extends the affine plane \mathbb{R}^2 by a line at infinity. A point $p \in \mathbb{P}^2$ is given by its homogeneous coordinates p = [x : y : z]:

- ▶ Not all of *x*, *y*, *z* are zero, and
- $[x:y:z] = [\lambda x:\lambda y:\lambda z]$ for $\lambda \neq 0$.

A triple of homogeneous coordinates [a:b:c] dually also represents a line in \mathbb{P}^2 with the equation ax + by + cz = 0.

In the projective plane...

Every pair of distinct points p, p' has a unique line $p \lor p'$ which contains them both. Every pair of distinct lines ℓ , ℓ' has a unique point $\ell \land \ell'$ which lies on both of them.

Both, \lor and \land , are the cross product \times in \mathbb{R}^3 operating on homogeneous coordinates.

Let p = [x : y : z] be a point and $\ell = [a : b : c]$ be a line. Then p lies on ℓ if and only if $0 = \langle p, \ell \rangle = ax + by + cz$.

Let p = [x : y : z] be a point and $\ell = [a : b : c]$ be a line. Then p lies on ℓ if and only if $0 = \langle p, \ell \rangle = ax + by + cz$.

An incidence structure is a combinatorial object consisting of

- finitely many (labels for) points \mathcal{P} ,
- finitely many (labels for) lines \mathcal{L} , and
- ▶ a set \mathcal{I} of incidence constraints $p \in \ell$ or $p \notin \ell$ for some $p \in \mathcal{P}$ and $\ell \in \mathcal{L}$.

We assume that there are four points in \mathcal{P} no three of which are collinear. They form a projective basis.

Let p = [x : y : z] be a point and $\ell = [a : b : c]$ be a line. Then p lies on ℓ if and only if $0 = \langle p, \ell \rangle = ax + by + cz$.

An incidence structure is a combinatorial object consisting of

- finitely many (labels for) points \mathcal{P} ,
- finitely many (labels for) lines \mathcal{L} , and
- ▶ a set \mathcal{I} of incidence constraints $p \in \ell$ or $p \notin \ell$ for some $p \in \mathcal{P}$ and $\ell \in \mathcal{L}$.

We assume that there are four points in \mathcal{P} no three of which are collinear. They form a projective basis.

Realizability problem for incidence structures PLR

Given an incidence structure, decide if it can be realized in \mathbb{P}^2 .

PLR is not straightforward

A technique for ∃ℝ-completeness

The coordinates of all points in \mathcal{P} and of all lines in \mathcal{L} are finitely many variables and we have (short!) polynomial equations ($p \in \ell$) and inequations ($p \notin \ell$) in them:

 $PLR \in \exists \mathbb{R}.$

A technique for ∃ℝ-completeness

The coordinates of all points in \mathcal{P} and of all lines in \mathcal{L} are finitely many variables and we have (short!) polynomial equations ($p \in \ell$) and inequations ($p \notin \ell$) in them:

 $PLR \in \exists \mathbb{R}.$

Theorem (von Staudt 1857)

PLR is $\exists \mathbb{R}$ -complete.

Recall: It suffices to reduce the variety case of ETR. We will show how to encode one polynomial equation f = 0 as an incidence structure.

A technique for $\exists \mathbb{R}$ -completeness

The coordinates of all points in \mathcal{P} and of all lines in \mathcal{L} are finitely many variables and we have (short!) polynomial equations ($p \in \ell$) and inequations ($p \notin \ell$) in them:

 $PLR \in \exists \mathbb{R}.$

Theorem (von Staudt 1857)

PLR is $\exists \mathbb{R}$ -complete.

Recall: It suffices to reduce the variety case of ETR. We will show how to encode one polynomial equation f = 0 as an incidence structure. In fact, the polynomials z = x + y and $z = x \cdot y$ are sufficient.

Where is Waldo?

Where is Waldo? On the cube root of 4!

► PLR is ∃R-complete.

- ► PLR is ∃R-complete.
- ► Solving systems consisting only of equations of the form x = 0, x = 1 or $\langle p, \ell \rangle = ax + by + cz = 0$ is $\exists \mathbb{R}$ -complete.

- ▶ PLR is $\exists \mathbb{R}$ -complete.
- ► Solving systems consisting only of equations of the form x = 0, x = 1 or $\langle p, \ell \rangle = ax + by + cz = 0$ is $\exists \mathbb{R}$ -complete.
- Solving systems consisting only of equations of the form x = 0, x = 1 or

$$\langle \boldsymbol{p}, \boldsymbol{q} \times \boldsymbol{r} \rangle = \det \begin{pmatrix} p_x & q_x & r_x \\ p_y & q_y & r_y \\ p_z & q_z & r_z \end{pmatrix} = \mathbf{0}$$

is $\exists \mathbb{R}$ -complete. \rightarrow matroid theory

- ▶ PLR is $\exists \mathbb{R}$ -complete.
- ► Solving systems consisting only of equations of the form x = 0, x = 1 or $\langle p, \ell \rangle = ax + by + cz = 0$ is $\exists \mathbb{R}$ -complete.
- Solving systems consisting only of equations of the form x = 0, x = 1 or

$$\langle p, q \times r \rangle = \det \begin{pmatrix} p_x & q_x & r_x \\ p_y & q_y & r_y \\ p_z & q_z & r_z \end{pmatrix} = 0$$

is $\exists \mathbb{R}\text{-complete.} \rightarrow \text{matroid theory}$

▶ Other examples, see Miltzow and Schmiermann (2021).

Conditional independence $[X \perp Y \mid Z]$

"When does knowing Z make X irrelevant for Y?"

Example: Two independent fair coins c_1 and c_2 are wired to a bell *b* which rings if and only if $c_1 = c_2$.

Example: Two independent fair coins c_1 and c_2 are wired to a bell *b* which rings if and only if $c_1 = c_2$.

► $C_1 \perp L C_2$

Example: Two independent fair coins c_1 and c_2 are wired to a bell *b* which rings if and only if $c_1 = c_2$.

- ► $C_1 \perp L C_2$
- $\neg(c_1 \perp c_2 \mid b) \ldots$

Example: Two independent fair coins c_1 and c_2 are wired to a bell *b* which rings if and only if $c_1 = c_2$.

- ► $C_1 \perp L C_2$
- $\neg(c_1 \perp c_2 \mid b) \ldots$

Question: When can we conclude from some independences other independences? E.g., is it possible that $c_1 \perp b$?

Gaussian conditional independence

Assume $\xi = (\xi_i : i \in N)$ are jointly Gaussian with covariance matrix $\Sigma \in PD_N$.

Definition

The polynomial $\Sigma[K] \coloneqq \det \Sigma_{K,K}$ is a *principal minor* of Σ and $\Sigma[ij | K] \coloneqq \det \Sigma_{iK,jK}$ is an *almost-principal minor*.

Algebraic statistics proves:

- Σ is PD if and only if $\Sigma[K] > 0$ for all $K \subseteq N$.
- $[\xi_i \perp \xi_j \mid \xi_K]$ holds if and only if $\Sigma[ij \mid K] = 0$.
- $\mathbb{E}[\xi] = \mu$ is irrelevant.

Very special polynomials

$$\begin{split} & \sum [ij \mid] = x_{ij} \\ & \sum [ij \mid k] = x_{ij} x_{kk} - x_{ik} x_{jk} \\ & \sum [ij \mid kl] = x_{ij} x_{kk} x_{ll} - x_{il} x_{jl} x_{kk} + x_{il} x_{jk} x_{kl} + x_{ik} x_{jl} x_{kl} - x_{ij} x_{kl}^2 - x_{ik} x_{jk} x_{ll} \\ & \sum [ij \mid klm] = x_{ij} x_{kk} x_{ll} x_{mm} + x_{im} x_{jm} x_{kl}^2 - x_{im} x_{jl} x_{kl} x_{km} - x_{il} x_{jm} x_{kl} x_{km} + x_{il} x_{jl} x_{km}^2 - x_{im} x_{jm} x_{kl} x_{km} - x_{il} x_{jm} x_{kl} x_{km} + x_{il} x_{jl} x_{km}^2 - x_{im} x_{jm} x_{kk} x_{ll} + x_{im} x_{jk} x_{km} x_{ll} - x_{ij} x_{km}^2 x_{ll} + x_{im} x_{jl} x_{kk} x_{lm} + x_{il} x_{jm} x_{kk} x_{lm} - x_{im} x_{jk} x_{kl} x_{lm} - x_{im} x_{jk} x_{kl} x_{lm} - x_{im} x_{jk} x_{kl} x_{lm} - x_{ik} x_{jl} x_{kl} x_{lm} - x_{il} x_{jk} x_{kl} x_{lm} - x_{ik} x_{jl} x_{kl} x_{km} x_{lm} + x_{ik} x_{jl} x_{kl} x_{lm} - x_{ij} x_{kl}^2 x_{mm} - x_{ik} x_{jl} x_{kl} x_{mm} + x_{ik} x_{jl} x_{kl} x_{mm} - x_{ij} x_{kl}^2 x_{mm} - x_{ik} x_{jk} x_{ll} x_{mm} + x_{ik} x_{jl} x_{kl} x_{mm} - x_{ij} x_{kl}^2 x_{mm} - x_{ik} x_{jk} x_{ll} x_{mm} + x_{ik} x_{jl} x_{kl} x_{mm} - x_{ij} x_{kl}^2 x_{mm} - x_{ik} x_{jk} x_{ll} x_{mm} + x_{ik} x_{jl} x_{kl} x_{mm} - x_{ij} x_{kl}^2 x_{mm} - x_{ik} x_{jk} x_{ll} x_{mm} + x_{ik} x_{jl} x_{kl} x_{mm} - x_{ij} x_{kl}^2 x_{mm} - x_{ik} x_{jk} x_{kl} x_{mm} + x_{ik} x_{jk} x_{kl} x_{mm} - x_{ij} x_{kl}^2 x_{mm} - x_{ik} x_{jk} x_{kl} x_{mm} + x_{ik} x_{jk} x_{kl} x_{mm} - x_{ik} x_{jk} x_{kl} x_{mm} + x_{ik} x_{jk} x_{kl} x_{mm} - x_{ik} x_{jk} x_{kl} x_{mm} - x_{ik} x_{jk} x_{kl} x_{mm} + x_{ik} x_{kl} x_{kl} x_{mm} - x_{ik} x_{jk} x_{kl} x_{$$

Gaussian CI models

Definition

A *CI* constraint is a CI statement $[\xi_i \perp \xi_j \mid \xi_K]$ or its negation $\neg[\xi_i \perp \xi_j \mid \xi_K]$. The *model* of a set of CI constraints is the set of all PD matrices which satisfy them.

Figure: Model of $\Sigma[12|3] = a - bc = 0$ in the space of 3×3 correlation matrices.

Inference problem for Gaussian conditional independence GCI

Given a clause $\land \mathcal{P} \Rightarrow \lor \mathcal{Q}$, where \mathcal{P} and \mathcal{Q} are sets of CI statements over N, decide if it is valid for all N-variate Gaussians.

 $\bigwedge \mathcal{P} \Rightarrow \bigvee \mathcal{Q}$

Inference problem for Gaussian conditional independence GCI

Given a clause $\land \mathcal{P} \Rightarrow \lor \mathcal{Q}$, where \mathcal{P} and \mathcal{Q} are sets of CI statements over N, decide if it is valid for all N-variate Gaussians.

$$\begin{array}{ccc} \bigwedge \mathcal{P} \Rightarrow \bigvee \mathcal{Q} & & & \\ \text{is not valid} & & & \\ \end{array} \qquad \longleftrightarrow & & \\ \begin{array}{c} \bigwedge (\mathcal{P} \cup \neg \mathcal{Q}) \\ \text{has a point} \end{array}$$

Example of CI inference

$$\Sigma = \begin{pmatrix} 1 & a & b \\ a & 1 & c \\ b & c & 1 \end{pmatrix}$$

• If $\Sigma[12|] = a$ and $\Sigma[12|3] = a - bc$ vanish, then $bc = \Sigma[13|] \cdot \Sigma[23|]$ must vanish:

 $[12|] \land [12|3] \Rightarrow [13|] \lor [23|].$

The GCI problem is as hard as it could possibly be:

Theorem

GCI is $\forall \mathbb{R}$ -complete where $\forall \mathbb{R}$ abbreviates co- $\exists \mathbb{R}$.

The GCI problem is as hard as it could possibly be:

Theorem

GCI is $\forall \mathbb{R}$ -complete where $\forall \mathbb{R}$ abbreviates co- $\exists \mathbb{R}$.

Proof.

Both parts require care!

The GCI problem is as hard as it could possibly be:

Theorem

GCI is $\forall \mathbb{R}$ -complete where $\forall \mathbb{R}$ abbreviates co- $\exists \mathbb{R}$.

Proof.

Both parts require care!

► To show containment in ∀R, we have to show that an n × n determinant of a symmetric matrix can be computed by a polynomially-sized polynomial system.

The GCI problem is as hard as it could possibly be:

Theorem

GCI is $\forall \mathbb{R}$ -complete where $\forall \mathbb{R}$ abbreviates co- $\exists \mathbb{R}$.

Proof.

Both parts require care!

- ► To show containment in ∀R, we have to show that an n×n determinant of a symmetric matrix can be computed by a polynomially-sized polynomial system.
- The hardness proof is more interesting! We express $\langle p, \ell \rangle$ using $\sum [ij | K]$.

Condensed almost-principal minor

Suppose $x_{xx} = x_{yy} = x_{zz} = 1$ (in a correlation matrix) and $x_{xy} = x_{xz} = x_{yz} = 0$: $\Sigma[ii] = x_{ii}$ $\Sigma[ij | xyz] = x_{ij} x_{xx} x_{vv} x_{zz} + x_{iz} x_{iz} x_{xv}^2 - x_{iz} x_{iv} x_{xv} x_{xz} - x_{iv} x_{iz} x_{xv} x_{xz} + x_{iv} x_{iv} x_{xz}^2$ $- \mathbf{X}_{iz} \mathbf{X}_{iz} \mathbf{X}_{xx} \mathbf{X}_{vv} + \mathbf{X}_{iz} \mathbf{X}_{ix} \mathbf{X}_{xz} \mathbf{X}_{vv} + \mathbf{X}_{ix} \mathbf{X}_{iz} \mathbf{X}_{xz} \mathbf{X}_{vv} - \mathbf{X}_{ii} \mathbf{X}_{vz}^{2} \mathbf{X}_{vv}$ $+ X_{iZ}X_{jV}X_{XX}X_{VZ} + X_{iV}X_{jZ}X_{XX}X_{VZ} - X_{iZ}X_{iX}X_{XV}X_{VZ} - X_{iX}X_{iZ}X_{XV}X_{VZ}$ $-x_{iv}x_{ix}x_{xz}x_{vz} - x_{ix}x_{iv}x_{xz}x_{vz} + 2x_{ij}x_{xv}x_{xz}x_{vz} + x_{ix}x_{jx}x_{vz}^{2}$ $-x_{ij}x_{XX}x_{vz}^{2} - x_{iv}x_{iv}x_{XX}x_{ZZ} + x_{iv}x_{ix}x_{Xv}x_{ZZ} + x_{ix}x_{iv}x_{Xv}x_{ZZ}$ $- \chi_{ii}\chi^2_{xv}\chi_{ZZ} - \chi_{ix}\chi_{ix}\chi_{vv}\chi_{ZZ}$ $= x_{ii} - \sum x_{ik} x_{ik} = x_{ii} - \langle p, \ell \rangle.$ k=x.v.z

Incidence geometry as conditional independence

		p1		p _n	l ₁		l _m	х	У	z
p ₁	(p_1^*		$\langle p,p' angle$				p_1^x	p_1^y	p_1^z
:			۰.			$\langle p, \ell \rangle$			÷	
p _n		$\langle p',p angle$		p_n^*				p_n^x	p_n^y	p_n^z
I_1					ℓ_1^*		$\langle \ell,\ell' angle$	ℓ_1^x	ℓ_1^y	ℓ_1^z
:			$\langle \ell, {oldsymbol p} angle$			·.			÷	
I_m					$\langle \ell',\ell \rangle$		ℓ_m^*	ℓ_m^x	ℓ_m^y	ℓ_m^z
х		p_1^x		p_n^x	ℓ_1^x		ℓ_m^x	1	0	0
у		$p_1^{\hat{y}}$		p_n^y	$\ell_1^{\hat{y}}$		ℓ_m^y	0	1	0
z		p_1^z		p_n^z	ℓ_1^z		ℓ_m^z	0	0	1 /

Universality theorems

More than computational complexity travels along those arcs!

Certification of consistency

Petr Šimeček. "Gaussian representation of independence models over four random variables". In: *COMPSTAT conference*. 2006

Šimeček's Question (2006)

Does every non-empty Gaussian CI model contain a rational point?

Or: can every wrong inference rule be refuted over \mathbb{Q} ?

Šimeček's Question (2006)

Does every non-empty Gaussian CI model contain a rational point?

Or: can every wrong inference rule be refuted over \mathbb{Q} ?

Model M85 Where:
a 1 a b c
$$a = \frac{3}{632836} \sqrt{1107463}$$
,
a 1 d e $b = 10c = \frac{100}{158209} \sqrt{1107463}$
b d 1 f $d = 10e = \frac{3}{4}, f = \frac{1}{10}$
c e f 1 $d = 10e = \frac{3}{4}, f = \frac{1}{10}$
 $(1 - 1/17 - 49/51 - 7/17) - 1/17 - 1/3 - 1/7 - 1/7 - 49/51 - 7/17)$

Šimeček's Question (2006)

Does every non-empty Gaussian CI model contain a rational point?

Or: can every wrong inference rule be refuted over $\mathbb{Q}?$

Theorem

For every finite real extension \mathbb{K} of \mathbb{Q} there exists a CI model \mathcal{M} such that $\mathcal{M} \cap \mathsf{PD}_{N}(\mathbb{K}) \neq \emptyset$ but $\mathcal{M} \cap \mathsf{PD}_{N}(\mathbb{L}) = \emptyset$ for all proper subfields $\mathbb{L} \subsetneq \mathbb{K}$.

References

Tobias Boege. "The Gaussian conditional independence inference problem". PhD thesis. OvGU Magdeburg, 2022.

- Jürgen Bokowski and Bernd Sturmfels. *Computational synthetic geometry*. Vol. 1355. Lecture Notes in Mathematics. Springer, 1989.
- Tillmann Miltzow and Reinier F. Schmiermann. On Classifying Continuous Constraint Satisfaction Problems. 2021. DOI: 10.48550/ARXIV.2106.02397. URL: https://arxiv.org/abs/2106.02397.
- Jürgen Richter-Gebert. Perspectives on projective geometry. A guided tour through real and complex geometry. Springer, 2011, pp. xxii + 571.
- Petr Šimeček. "Gaussian representation of independence models over four random variables". In: *COMPSTAT conference*. 2006.