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Causal modeling with directed graphs

Causal modeling:

I We want a statistical model which captures the causal
structure encoded in a directed graph G = (V ,E).

I Parents of a node are regarded as its direct causes,
further-up ancestors are only indirect causes.

I The causal diagram may come from expert knowledge
or it might be learned from observational data.
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Causal modeling in physics
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California Press, 1971.
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Linear structural equation models

I Linear structural equation models provide a simple encoding of causal diagrams G.
Define a random variable Xj as a linear function of its parents, up to some noise:

Xj =
∑

i∈pa(j)
λijXi + εj , εj ∼ N (0, ωj).

I In short: X = ΛX + ε where Λ is G-sparse and ε ∼ N (0,Ω) with Ω diagonal.

I Solutions to this system are multivariate normal distributions with zero mean
and covariance matrix Σ satisfying the congruence

(I − Λ)TΣ(I − Λ) = Ω.
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LSEMs as statistical models

I The map φ(Λ,Ω) := Σ = (I − Λ)−TΩ(I − Λ)−1 is rational.

+ The statistical model is an irreducible algebraic subset of PDV .

I If G is
::::::
acyclic, then φ has a rational inverse (global identifiability).

I There is an implicit description of the model via conditional independence:

Σ belongs to the LSEM of G (
::::::
acyclic) if and only if

[i ⊥⊥ j | pa(j)] holds for each i → j /∈ E(G) with i <G j.

I Gaußian version of Bayesian networks.

Interactions between nodes only through the prescribed causal mechanism!



4 / 14

LSEMs as statistical models

I The map φ(Λ,Ω) := Σ = (I − Λ)−TΩ(I − Λ)−1 is rational.

+ The statistical model is an irreducible algebraic subset of PDV .

I If G is
::::::
acyclic, then φ has a rational inverse (global identifiability).

I There is an implicit description of the model via conditional independence:

Σ belongs to the LSEM of G (
::::::
acyclic) if and only if

[i ⊥⊥ j | pa(j)] holds for each i → j /∈ E(G) with i <G j.

I Gaußian version of Bayesian networks.

Interactions between nodes only through the prescribed causal mechanism!



4 / 14

LSEMs as statistical models

I The map φ(Λ,Ω) := Σ = (I − Λ)−TΩ(I − Λ)−1 is rational.

+ The statistical model is an irreducible algebraic subset of PDV .

I If G is
::::::
acyclic, then φ has a rational inverse (global identifiability).

I There is an implicit description of the model via conditional independence:

Σ belongs to the LSEM of G (
::::::
acyclic) if and only if

[i ⊥⊥ j | pa(j)] holds for each i → j /∈ E(G) with i <G j.

I Gaußian version of Bayesian networks.

Interactions between nodes only through the prescribed causal mechanism!



4 / 14

LSEMs as statistical models

I The map φ(Λ,Ω) := Σ = (I − Λ)−TΩ(I − Λ)−1 is rational.

+ The statistical model is an irreducible algebraic subset of PDV .

I If G is
::::::
acyclic, then φ has a rational inverse (global identifiability).

I There is an implicit description of the model via conditional independence:
Σ belongs to the LSEM of G (

::::::
acyclic) if and only if

[i ⊥⊥ j | pa(j)] holds for each i → j /∈ E(G) with i <G j.

I Gaußian version of Bayesian networks.

Interactions between nodes only through the prescribed causal mechanism!



4 / 14

LSEMs as statistical models

I The map φ(Λ,Ω) := Σ = (I − Λ)−TΩ(I − Λ)−1 is rational.

+ The statistical model is an irreducible algebraic subset of PDV .

I If G is
::::::
acyclic, then φ has a rational inverse (global identifiability).

I There is an implicit description of the model via conditional independence:
Σ belongs to the LSEM of G (

::::::
acyclic) if and only if

[i ⊥⊥ j | pa(j)] holds for each i → j /∈ E(G) with i <G j.

I Gaußian version of Bayesian networks.

Interactions between nodes only through the prescribed causal mechanism!



4 / 14

LSEMs as statistical models

I The map φ(Λ,Ω) := Σ = (I − Λ)−TΩ(I − Λ)−1 is rational.

+ The statistical model is an irreducible algebraic subset of PDV .

I If G is
::::::
acyclic, then φ has a rational inverse (global identifiability).

I There is an implicit description of the model via conditional independence:
Σ belongs to the LSEM of G (

::::::
acyclic) if and only if

[i ⊥⊥ j | pa(j)] holds for each i → j /∈ E(G) with i <G j.

I Gaußian version of Bayesian networks.

Interactions between nodes only through the prescribed causal mechanism!



5 / 14

Two shortcomings of LSEMs

I Identifiability of parameters (Λ,Ω) is lost when the causal structure contains
feedback loops (cycles).

I Different causal structures may define the same model due to Markov equivalence.
This stunts any attempts to learn causal structures from data.

Example: The LSEMs of A → B → C and C → B → A are both defined by the
independence [A ⊥⊥ C | B] which is a polynomial equation in the entries of Σ:

σB,BσA,C = σA,BσB,C .

Same model despite opposite claims of causation.

Some good news: Markov equivalence can be characterized combinatorially!
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Lyapunov models

I We want a statistical model which captures the causal
structure of a directed graph G = (V ,E) with cycles.

I Idea of [Fit19; VH20]: unroll the feedback loop over time.

B E

D

A

C

· · · X(t) X(t + 1) · · ·

· · · Y (t) Y (t + 1) · · ·

I Formally, take the stationary distribution of the Ornstein–Uhlenbeck process

dX(t) = MX(t)dt + DdW(t),

where M is G-sparse, W a standard Brownian motion, and D diagonal.
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Parametrization of Lyapunov models

I The stationary distribution is Gaußian with covariance matrix satisfying the
Lyapunov equation MΣ+ ΣMT + C = 0 where C = DDT.

I If M is stable (all eigenvalues have negative real part) and C is positive definite,
then there exists a unique positive definite solution Σ.

I The Lyapunov equation is a linear matrix equation in Σ, so it can be rewritten via
vectorization and Kronecker products:

(I ⊗ M + M ⊗ I) vecΣ = − vecC .

I The unique solution is obtained via Cramer’s rule.

The Lyapunov model is an irreducible algebraic variety!
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Beauty is in the eye of the beholder…
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Parameter identifiability

MΣ+ ΣMT + C = 0.

I The Lyapunov equation is also a linear matrix equation in M, equivalent to:

(Σ⊗ I + (I ⊗ Σ)Kn) vecM = − vecC ,

where Kn is the commutation matrix satisfying Kn vecM = vec(MT).

I It has redundant rows since Σ and C are symmetric, but:

Theorem ([DHADH23])
Let G be a simple directed graph (i.e., having no directed 2-cycles). Given Σ in
the Lyapunov model of G with fixed diffusion matrix C, the parameter matrix M
is uniquely recoverable as a rational function of Σ.

Lyapunov models are more often globally identifiable than LSEMs!
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Independence structure

Fundamental question for a dynamical system / stochastic process:

At the stationary points, which coordinates end up correlated, and how?

The marginal independence graph Ĝ of G = (V ,E) is the undirected graph on
vertices V in which i − j ∈ Ê if and only if i and j have a common ancestor in G.

Theorem ([BDHLMS25])
The Lyapunov model of G is Markov-perfect to Ĝ:

I Every Σ in the model has σij = 0 (i.e., [i ⊥⊥ j]) if and only if i − j /∈ Ê .
I All valid conditional independencies on the model are implied by these zeros.

Strange: Lyapunov models are not defined by conditional independence relations.
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vertices V in which i − j ∈ Ê if and only if i and j have a common ancestor in G.

Theorem ([BDHLMS25])
The Lyapunov model of G is Markov-perfect to Ĝ:
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Causal structure for acyclic graphs

The big surprise: Lyapunov models encode a lot of causal information.

Theorem ([ABHM25])
If G and H are

:::::::
acyclic then they define the same Lyapunov model if and only if

they have the same (undirected) adjacencies and all induced subgraphs of size
four have the same model. In this case, G can be transformed into H by a series
of distinct structured edge reversals without leaving the equivalence class.

+ Bayesian networks require all 3-induced subgraphs to be equivalent.

Corollary
Model equivalence can be checked in polynomial time. Model equivalence classes
can be enumerated in an output-sensitive manner.
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Causal discovery

Theorem ([ABHM25])
An

::::::
acyclic causal structure G is uniquely identifiable from data if and only if it does

not contain an edge i → j with the following properties:

I pa(i) ∪ {i} = pa(j) and ch(i) = ch(j) ∪ {j},
I for all k ∈ pa(j) and l ∈ ch(i) the edge k → l exists in G,
I if k − i or k − j in Ĝ then i → k or k → j in G.

+ A → B → C and C → B → A define different Lyapunov models!

Corollary
Lyapunov models refine the Markov equivalence classes of Bayesian networks.
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I if k − i or k − j in Ĝ then i → k or k → j in G.

+ A → B → C and C → B → A define different Lyapunov models!

Corollary
Lyapunov models refine the Markov equivalence classes of Bayesian networks.



12 / 14

Causal discovery

Theorem ([ABHM25])
An

::::::
acyclic causal structure G is uniquely identifiable from data if and only if it does

not contain an edge i → j with the following properties:
I pa(i) ∪ {i} = pa(j) and ch(i) = ch(j) ∪ {j},
I for all k ∈ pa(j) and l ∈ ch(i) the edge k → l exists in G,
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A sparsest (connected) example of non-identifiability

I pa(i) ∪ {i} = pa(j) and ch(i) = ch(j) ∪ {j},
I for all k ∈ pa(j) and l ∈ ch(i) the edge k → l exists in G,
I if k − i or k − j in Ĝ then i → k or k → j in G.
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Summary on Lyapunov models

I Represent a new paradigm in causal modeling via stochastic processes.

I Temporal perspective accommodates feedback loops.
I Parameters are globally identifiable more often than for LSEMs.
I Conditional independence structure is very coarse.
I Despite that, they encode strictly more causal information than Bayesian networks.

Lyapunov DAG models Bayesian network models
n DAGs Distinct models Identifiable Distinct models Identifiable
3 25 17 13 11 4
4 543 461 423 185 59
5 29 281 27 697 26 761 8 782 2 616
6 3 781 503 3 715 745 3 665 673 1 067 825 306 117
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