Causality and independence in stationary diffusions

Tobias Boege

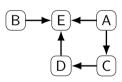
Department of Mathematics and Statistics UiT The Arctic University of Norway

Algebraic methods in dynamics and particle physics MPI-SWS Saarbrücken, October 16

Causal modeling with directed graphs

Causal modeling:

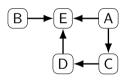
▶ We want a statistical model which captures the causal structure encoded in a directed graph $\mathcal{G} = (V, E)$.



Causal modeling with directed graphs

Causal modeling:

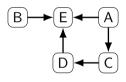
- ▶ We want a statistical model which captures the causal structure encoded in a directed graph $\mathcal{G} = (V, E)$.
- ► Parents of a node are regarded as its direct causes, further-up ancestors are only indirect causes.



Causal modeling with directed graphs

Causal modeling:

- ▶ We want a statistical model which captures the causal structure encoded in a directed graph $\mathcal{G} = (V, E)$.
- ► Parents of a node are regarded as its direct causes, further-up ancestors are only indirect causes.
- ► The causal diagram may come from expert knowledge or it might be learned from observational data.



Causal modeling in physics

- ► Hans Reichenbach. *The direction of time*. Edited by Maria Reichenbach. University of California Press, 1971.
- ► Časlav Brukner. "Quantum causality". In: *Nature Physics* 10.4 (2014). DOI: 10.1038/nphys2930.
- ▶ John-Mark A. Allen, Jonathan Barrett, Dominic C. Horsman, Ciarán M. Lee, and Robert W. Spekkens. "Quantum Common Causes and Quantum Causal Models". In: *Phys. Rev. X* 7.3 (2017). DOI: 10.1103/PhysRevX.7.031021.
- ▶ Jonathan Barrett, Robin Lorenz, and Ognyan Oreshkov. "Cyclic quantum causal models". In: *Nature Communications* 12.1 (2021). DOI: 10.1038/s41467-020-20456-x.

Linear structural equation models

▶ Linear structural equation models provide a simple encoding of causal diagrams \mathcal{G} . Define a random variable X_i as a linear function of its parents, up to some noise:

$$X_j = \sum_{i \in \mathrm{pa}(j)} \lambda_{ij} X_i + arepsilon_j, \quad arepsilon_j \sim \mathcal{N}(0, \omega_j).$$

Linear structural equation models

▶ Linear structural equation models provide a simple encoding of causal diagrams \mathcal{G} . Define a random variable X_i as a linear function of its parents, up to some noise:

$$X_j = \sum_{i \in \mathrm{pa}(j)} \lambda_{ij} X_i + \varepsilon_j, \quad \varepsilon_j \sim \mathcal{N}(0, \omega_j).$$

▶ In short: X = ΛX + ε where Λ is G-sparse and ε ∼ N(0, Ω) with Ω diagonal.

Linear structural equation models

▶ Linear structural equation models provide a simple encoding of causal diagrams \mathcal{G} . Define a random variable X_i as a linear function of its parents, up to some noise:

$$X_j = \sum_{i \in \mathrm{pa}(j)} \lambda_{ij} X_i + \varepsilon_j, \quad \varepsilon_j \sim \mathcal{N}(0, \omega_j).$$

- ▶ In short: $X = \Lambda X + \varepsilon$ where Λ is \mathcal{G} -sparse and $\varepsilon \sim \mathcal{N}(0, \Omega)$ with Ω diagonal.
- ightharpoonup Solutions to this system are multivariate normal distributions with zero mean and covariance matrix Σ satisfying the congruence

$$(I - \Lambda)^{\mathsf{T}} \Sigma (I - \Lambda) = \Omega.$$

▶ The map $\phi(\Lambda, \Omega) := \Sigma = (I - \Lambda)^{-T}\Omega(I - \Lambda)^{-1}$ is rational.

- ► The map $\phi(\Lambda, \Omega) := \Sigma = (I \Lambda)^{-T} \Omega (I \Lambda)^{-1}$ is rational.

 The statistical model is an irreducible algebraic subset of PD_V.
- ▶ If \mathcal{G} is acyclic, then ϕ has a rational inverse (global identifiability).

- ► The map $\phi(\Lambda, \Omega) := \Sigma = (I \Lambda)^{-T} \Omega (I \Lambda)^{-1}$ is rational.

 The statistical model is an irreducible algebraic subset of PD_V.
- ▶ If \mathcal{G} is acyclic, then ϕ has a rational inverse (global identifiability).
- ▶ There is an implicit description of the model via conditional independence:

- ► The map $\phi(\Lambda, \Omega) := \Sigma = (I \Lambda)^{-T} \Omega (I \Lambda)^{-1}$ is rational.

 The statistical model is an irreducible algebraic subset of PD_V.
- ▶ If \mathcal{G} is acyclic, then ϕ has a rational inverse (global identifiability).
- ▶ There is an implicit description of the model via conditional independence: Σ belongs to the LSEM of \mathcal{G} (acyclic) if and only if

$$[i \perp \!\!\!\perp j \mid \mathrm{pa}(j)]$$
 holds for each $i \to j \notin E(\mathcal{G})$ with $i <_{\mathcal{G}} j$.

- ► The map $\phi(\Lambda, \Omega) := \Sigma = (I \Lambda)^{-T} \Omega (I \Lambda)^{-1}$ is rational.

 The statistical model is an irreducible algebraic subset of PD_V.
- ▶ If \mathcal{G} is acyclic, then ϕ has a rational inverse (global identifiability).
- ▶ There is an implicit description of the model via conditional independence: Σ belongs to the LSEM of \mathcal{G} (acyclic) if and only if

$$[i \perp \!\!\!\perp j \mid \mathrm{pa}(j)]$$
 holds for each $i \to j \notin E(\mathcal{G})$ with $i <_{\mathcal{G}} j$.

► Gaußian version of Bayesian networks.

- ► The map $\phi(\Lambda, \Omega) := \Sigma = (I \Lambda)^{-T} \Omega (I \Lambda)^{-1}$ is rational.

 The statistical model is an irreducible algebraic subset of PD_V.
- lacktriangleright If ${\mathcal G}$ is acyclic, then ϕ has a rational inverse (global identifiability).
- ▶ There is an implicit description of the model via conditional independence: Σ belongs to the LSEM of \mathcal{G} (acyclic) if and only if

$$[i \perp \!\!\!\perp j \mid \mathrm{pa}(j)]$$
 holds for each $i \to j \notin E(\mathcal{G})$ with $i <_{\mathcal{G}} j$.

► Gaußian version of Bayesian networks.

> Interactions between nodes only through the prescribed causal mechanism! <

▶ Identifiability of parameters (Λ, Ω) is lost when the causal structure contains feedback loops (cycles).

- ▶ Identifiability of parameters (Λ, Ω) is lost when the causal structure contains feedback loops (cycles).
- ▶ Different causal structures may define the same model due to Markov equivalence. This stunts any attempts to learn causal structures from data.

- ▶ Identifiability of parameters (Λ, Ω) is lost when the causal structure contains feedback loops (cycles).
- ▶ Different causal structures may define the same model due to Markov equivalence. This stunts any attempts to learn causal structures from data.

Example: The LSEMs of $A \to B \to C$ and $C \to B \to A$ are both defined by the independence $[A \perp\!\!\!\perp C \mid B]$ which is a polynomial equation in the entries of Σ :

$$\sigma_{B,B}\sigma_{A,C}=\sigma_{A,B}\sigma_{B,C}.$$

- ▶ Identifiability of parameters (Λ, Ω) is lost when the causal structure contains feedback loops (cycles).
- ▶ Different causal structures may define the same model due to Markov equivalence. This stunts any attempts to learn causal structures from data.

Example: The LSEMs of $A \to B \to C$ and $C \to B \to A$ are both defined by the independence $[A \perp\!\!\!\perp C \mid B]$ which is a polynomial equation in the entries of Σ :

$$\sigma_{B,B}\sigma_{A,C}=\sigma_{A,B}\sigma_{B,C}.$$

Same model despite opposite claims of causation.

- ▶ Identifiability of parameters (Λ, Ω) is lost when the causal structure contains feedback loops (cycles).
- ▶ Different causal structures may define the same model due to Markov equivalence. This stunts any attempts to learn causal structures from data.

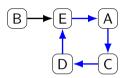
Example: The LSEMs of $A \to B \to C$ and $C \to B \to A$ are both defined by the independence $[A \perp\!\!\!\perp C \mid B]$ which is a polynomial equation in the entries of Σ :

$$\sigma_{B,B}\sigma_{A,C}=\sigma_{A,B}\sigma_{B,C}.$$

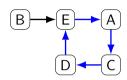
Same model despite opposite claims of causation.

Some good news: Markov equivalence can be characterized combinatorially!

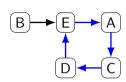
▶ We want a statistical model which captures the causal structure of a directed graph $\mathcal{G} = (V, E)$ with cycles.



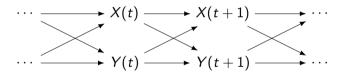
- ▶ We want a statistical model which captures the causal structure of a directed graph $\mathcal{G} = (V, E)$ with cycles.
- ▶ Idea of [Fit19; VH20]: unroll the feedback loop over time.



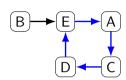
▶ We want a statistical model which captures the causal structure of a directed graph $\mathcal{G} = (V, E)$ with cycles.



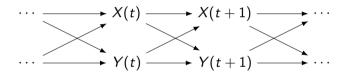
▶ Idea of [Fit19; VH20]: unroll the feedback loop over time.



▶ We want a statistical model which captures the causal structure of a directed graph $\mathcal{G} = (V, E)$ with cycles.



▶ Idea of [Fit19; VH20]: unroll the feedback loop over time.



► Formally, take the stationary distribution of the Ornstein–Uhlenbeck process

$$dX(t) = MX(t)dt + DdW(t),$$

where M is \mathcal{G} -sparse, \mathbb{W} a standard Brownian motion, and D diagonal.

The stationary distribution is Gaußian with covariance matrix satisfying the Lyapunov equation $M\Sigma + \Sigma M^T + C = 0$ where $C = DD^T$.

- The stationary distribution is Gaußian with covariance matrix satisfying the Lyapunov equation $M\Sigma + \Sigma M^T + C = 0$ where $C = DD^T$.
- ▶ If M is stable (all eigenvalues have negative real part) and C is positive definite, then there exists a unique positive definite solution Σ .

- The stationary distribution is Gaußian with covariance matrix satisfying the Lyapunov equation $M\Sigma + \Sigma M^T + C = 0$ where $C = DD^T$.
- ▶ If M is stable (all eigenvalues have negative real part) and C is positive definite, then there exists a unique positive definite solution Σ .
- ▶ The Lyapunov equation is a linear matrix equation in Σ , so it can be rewritten via vectorization and Kronecker products:

$$(I \otimes M + M \otimes I) \operatorname{vec} \Sigma = - \operatorname{vec} C.$$

- The stationary distribution is Gaußian with covariance matrix satisfying the Lyapunov equation $M\Sigma + \Sigma M^T + C = 0$ where $C = DD^T$.
- ▶ If M is stable (all eigenvalues have negative real part) and C is positive definite, then there exists a unique positive definite solution Σ .
- ightharpoonup The Lyapunov equation is a linear matrix equation in Σ , so it can be rewritten via vectorization and Kronecker products:

$$(I \otimes M + M \otimes I) \operatorname{vec} \Sigma = -\operatorname{vec} C.$$

► The unique solution is obtained via Cramer's rule.

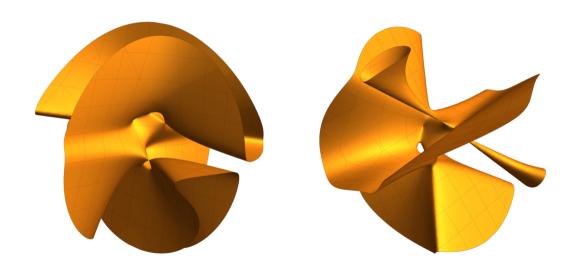
- The stationary distribution is Gaußian with covariance matrix satisfying the Lyapunov equation $M\Sigma + \Sigma M^T + C = 0$ where $C = DD^T$.
- ▶ If M is stable (all eigenvalues have negative real part) and C is positive definite, then there exists a unique positive definite solution Σ .
- ightharpoonup The Lyapunov equation is a linear matrix equation in Σ , so it can be rewritten via vectorization and Kronecker products:

$$(I \otimes M + M \otimes I) \operatorname{vec} \Sigma = - \operatorname{vec} C.$$

▶ The unique solution is obtained via Cramer's rule.

⇒ The Lyapunov model is an irreducible algebraic variety!

Beauty is in the eye of the beholder...



$$M\Sigma + \Sigma M^{\mathsf{T}} + C = 0.$$

 \blacktriangleright The Lyapunov equation is also a linear matrix equation in M, equivalent to:

$$(\Sigma \otimes I + (I \otimes \Sigma)K_n) \operatorname{vec} M = -\operatorname{vec} C,$$

where K_n is the commutation matrix satisfying K_n vec $M = \text{vec}(M^T)$.

$$M\Sigma + \Sigma M^{\mathsf{T}} + C = 0.$$

 \blacktriangleright The Lyapunov equation is also a linear matrix equation in M, equivalent to:

$$(\Sigma \otimes I + (I \otimes \Sigma)K_n) \operatorname{vec} M = -\operatorname{vec} C,$$

where K_n is the commutation matrix satisfying $K_n \operatorname{vec} M = \operatorname{vec}(M^T)$.

▶ It has redundant rows since Σ and C are symmetric, but:

$$M\Sigma + \Sigma M^{\mathsf{T}} + C = 0.$$

 \blacktriangleright The Lyapunov equation is also a linear matrix equation in M, equivalent to:

$$(\Sigma \otimes I + (I \otimes \Sigma)K_n) \operatorname{vec} M = -\operatorname{vec} C,$$

where K_n is the commutation matrix satisfying K_n vec $M = \text{vec}(M^T)$.

▶ It has redundant rows since Σ and C are symmetric, but:

Theorem ([DHADH23])

Let $\mathcal G$ be a simple directed graph (i.e., having no directed 2-cycles). Given Σ in the Lyapunov model of $\mathcal G$ with fixed diffusion matrix $\mathcal C$, the parameter matrix $\mathcal M$ is uniquely recoverable as a rational function of Σ .

$$M\Sigma + \Sigma M^{\mathsf{T}} + C = 0.$$

 \blacktriangleright The Lyapunov equation is also a linear matrix equation in M, equivalent to:

$$(\Sigma \otimes I + (I \otimes \Sigma)K_n) \operatorname{vec} M = -\operatorname{vec} C,$$

where K_n is the commutation matrix satisfying $K_n \operatorname{vec} M = \operatorname{vec}(M^T)$.

▶ It has redundant rows since Σ and C are symmetric, but:

Theorem ([DHADH23])

Let $\mathcal G$ be a simple directed graph (i.e., having no directed 2-cycles). Given Σ in the Lyapunov model of $\mathcal G$ with fixed diffusion matrix $\mathcal C$, the parameter matrix $\mathcal M$ is uniquely recoverable as a rational function of Σ .

Example 2 Lyapunov models are more often globally identifiable than LSEMs!

Independence structure

Fundamental question for a dynamical system / stochastic process:

At the stationary points, which coordinates end up correlated, and how?

Independence structure

Fundamental question for a dynamical system / stochastic process:

At the stationary points, which coordinates end up correlated, and how?

The marginal independence graph $\widehat{\mathcal{G}}$ of $\mathcal{G}=(V,E)$ is the undirected graph on vertices V in which $i-j\in\widehat{E}$ if and only if i and j have a common ancestor in \mathcal{G} .

Independence structure

Fundamental question for a dynamical system / stochastic process:

At the stationary points, which coordinates end up correlated, and how?

The marginal independence graph $\widehat{\mathcal{G}}$ of $\mathcal{G}=(V,E)$ is the undirected graph on vertices V in which $i-j\in\widehat{E}$ if and only if i and j have a common ancestor in \mathcal{G} .

Theorem ([BDHLMS25])

The Lyapunov model of G is Markov-perfect to \widehat{G} :

Independence structure

Fundamental question for a dynamical system / stochastic process:

At the stationary points, which coordinates end up correlated, and how?

The marginal independence graph $\widehat{\mathcal{G}}$ of $\mathcal{G}=(V,E)$ is the undirected graph on vertices V in which $i-j\in\widehat{E}$ if and only if i and j have a common ancestor in \mathcal{G} .

Theorem ([BDHLMS25])

The Lyapunov model of G is Markov-perfect to \widehat{G} :

▶ Every Σ in the model has $\sigma_{ij} = 0$ (i.e., $[i \perp \!\!\! \perp j]$) if and only if $i - j \notin \widehat{E}$.

Independence structure

Fundamental question for a dynamical system / stochastic process:

At the stationary points, which coordinates end up correlated, and how?

The marginal independence graph $\widehat{\mathcal{G}}$ of $\mathcal{G}=(V,E)$ is the undirected graph on vertices V in which $i-j\in\widehat{E}$ if and only if i and j have a common ancestor in \mathcal{G} .

Theorem ([BDHLMS25])

The Lyapunov model of G is Markov-perfect to \widehat{G} :

- ▶ Every Σ in the model has $\sigma_{ij} = 0$ (i.e., $[i \perp \!\!\! \perp j]$) if and only if $i j \notin \widehat{E}$.
- ▶ All valid conditional independencies on the model are implied by these zeros.

Independence structure

Fundamental question for a dynamical system / stochastic process:

At the stationary points, which coordinates end up correlated, and how?

The marginal independence graph $\widehat{\mathcal{G}}$ of $\mathcal{G}=(V,E)$ is the undirected graph on vertices V in which $i-j\in\widehat{E}$ if and only if i and j have a common ancestor in \mathcal{G} .

Theorem ([BDHLMS25])

The Lyapunov model of G is Markov-perfect to \widehat{G} :

- ▶ Every Σ in the model has $\sigma_{ij} = 0$ (i.e., $[i \perp \!\!\! \perp j]$) if and only if $i j \notin \widehat{E}$.
- ▶ All valid conditional independencies on the model are implied by these zeros.

Strange: Lyapunov models are **not** defined by conditional independence relations.

The big surprise: Lyapunov models encode a lot of causal information.

The big surprise: Lyapunov models encode a lot of causal information.

Theorem ([ABHM25])

If \mathcal{G} and \mathcal{H} are acyclic then they define the same Lyapunov model if and only if they have the same (undirected) adjacencies and all induced subgraphs of size four have the same model.

The big surprise: Lyapunov models encode a lot of causal information.

Theorem ([ABHM25])

If $\mathcal G$ and $\mathcal H$ are acyclic then they define the same Lyapunov model if and only if they have the same (undirected) adjacencies and all induced subgraphs of size four have the same model. In this case, $\mathcal G$ can be transformed into $\mathcal H$ by a series of distinct structured edge reversals without leaving the equivalence class.

The big surprise: Lyapunov models encode a lot of causal information.

Theorem ([ABHM25])

If $\mathcal G$ and $\mathcal H$ are acyclic then they define the same Lyapunov model if and only if they have the same (undirected) adjacencies and all induced subgraphs of size four have the same model. In this case, $\mathcal G$ can be transformed into $\mathcal H$ by a series of distinct structured edge reversals without leaving the equivalence class.

Bayesian networks require all 3-induced subgraphs to be equivalent.

The big surprise: Lyapunov models encode a lot of causal information.

Theorem ([ABHM25])

If $\mathcal G$ and $\mathcal H$ are acyclic then they define the same Lyapunov model if and only if they have the same (undirected) adjacencies and all induced subgraphs of size four have the same model. In this case, $\mathcal G$ can be transformed into $\mathcal H$ by a series of distinct structured edge reversals without leaving the equivalence class.

Bayesian networks require all 3-induced subgraphs to be equivalent.

Corollary

Model equivalence can be checked in polynomial time. Model equivalence classes can be enumerated in an output-sensitive manner.

Theorem ([ABHM25])

An acyclic causal structure \mathcal{G} is uniquely identifiable from data if and only if it does **not** contain an edge $i \to j$ with the following properties:

Theorem ([ABHM25])

An acyclic causal structure G is uniquely identifiable from data if and only if it does not contain an edge $i \rightarrow j$ with the following properties:

Theorem ([ABHM25])

An acyclic causal structure \mathcal{G} is uniquely identifiable from data if and only if it does **not** contain an edge $i \to j$ with the following properties:

- ▶ for all $k \in pa(j)$ and $l \in ch(i)$ the edge $k \to l$ exists in G,

Theorem ([ABHM25])

An acyclic causal structure G is uniquely identifiable from data if and only if it does **not** contain an edge $i \rightarrow j$ with the following properties:

- ▶ for all $k \in pa(j)$ and $l \in ch(i)$ the edge $k \to l$ exists in G,
- ▶ if k i or k j in $\widehat{\mathcal{G}}$ then $i \to k$ or $k \to j$ in \mathcal{G} .

Theorem ([ABHM25])

An acyclic causal structure G is uniquely identifiable from data if and only if it does **not** contain an edge $i \to j$ with the following properties:

- ▶ for all $k \in pa(j)$ and $l \in ch(i)$ the edge $k \to l$ exists in G,
- ▶ if k i or k j in $\widehat{\mathcal{G}}$ then $i \to k$ or $k \to j$ in \mathcal{G} .

 $\blacksquare A \rightarrow B \rightarrow C$ and $C \rightarrow B \rightarrow A$ define different Lyapunov models!

Theorem ([ABHM25])

An acyclic causal structure G is uniquely identifiable from data if and only if it does **not** contain an edge $i \rightarrow j$ with the following properties:

- ▶ for all $k \in pa(j)$ and $l \in ch(i)$ the edge $k \to l$ exists in G,
- ▶ if k i or k j in $\widehat{\mathcal{G}}$ then $i \to k$ or $k \to j$ in \mathcal{G} .

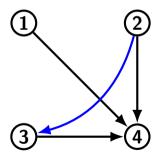
 $\blacksquare A \rightarrow B \rightarrow C$ and $C \rightarrow B \rightarrow A$ define different Lyapunov models!

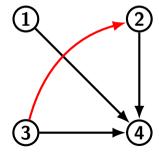
Corollary

Lyapunov models refine the Markov equivalence classes of Bayesian networks.

A sparsest (connected) example of non-identifiability

- ▶ $\operatorname{pa}(i) \cup \{i\} = \operatorname{pa}(j) \text{ and } \operatorname{ch}(i) = \operatorname{ch}(j) \cup \{j\},$
- ▶ for all $k \in pa(j)$ and $l \in ch(i)$ the edge $k \to l$ exists in \mathcal{G} ,
- ▶ if k i or k j in $\widehat{\mathcal{G}}$ then $i \to k$ or $k \to j$ in \mathcal{G} .





▶ Represent a new paradigm in causal modeling via stochastic processes.

- ▶ Represent a new paradigm in causal modeling via stochastic processes.
- ► Temporal perspective accommodates feedback loops.

- ▶ Represent a new paradigm in causal modeling via stochastic processes.
- ► Temporal perspective accommodates feedback loops.
- ▶ Parameters are globally identifiable more often than for LSEMs.

- ▶ Represent a new paradigm in causal modeling via stochastic processes.
- ► Temporal perspective accommodates feedback loops.
- ▶ Parameters are globally identifiable more often than for LSEMs.
- ► Conditional independence structure is very coarse.

- ▶ Represent a new paradigm in causal modeling via stochastic processes.
- ► Temporal perspective accommodates feedback loops.
- ▶ Parameters are globally identifiable more often than for LSEMs.
- ► Conditional independence structure is very coarse.
- ▶ Despite that, they encode strictly more causal information than Bayesian networks.

- ▶ Represent a new paradigm in causal modeling via stochastic processes.
- ► Temporal perspective accommodates feedback loops.
- ▶ Parameters are globally identifiable more often than for LSEMs.
- ► Conditional independence structure is very coarse.
- ▶ Despite that, they encode strictly more causal information than Bayesian networks.

		Lyapunov DA	G models	Bayesian network models	
n	DAGs	Distinct models	Identifiable	Distinct models	Identifiable
3	25	17	13	11	4
4	543	461	423	185	59
5	29 281	27 697	26 761	8 782	2616
6	3 781 503	3 715 745	3 665 673	1 067 825	306 117

References

[ABHM25]	Carlos Améndola, Tobias Boege, Benjamin Hollering, and Pratik Misra. <i>Structural Identifiability of Graphical Continuous Lyapunov Models</i> . 2025. arXiv: 2510.04985 [math.ST].
[BDHLMS25]	Tobias Boege, Mathias Drton, Benjamin Hollering, Sarah Lumpp, Pratik Misra, and Daniela Schkoda. "Conditional independence in stationary diffusions". In: Stochastic Processes and their Applications (2025). DOI: 10.1016/j.spa.2025.104604.
[DHADH23]	Philipp Dettling, Roser Homs, Carlos Améndola, Mathias Drton, and Niels Richard Hansen. "Identifiability in Continuous Lyapunov Models". In: <i>SIAM Journal on Matrix Analysis and Applications</i> 44.4 (2023), pp. 1799–1821.
[Fit19]	Katherine E. Fitch. Learning Directed Graphical Models from Gaussian Data. Preprint, arXiv:1906.08050 [cs.LG]. 2019. arXiv: 1906.08050. URL: https://arxiv.org/abs/1906.08050.
[VH20]	Gherardo Varando and Niels Richard Hansen. "Graphical continuous Lyapunov models". In: <i>Proceedings of the 36th Conference on Uncertainty in Artificial</i>

Machine Learning Research. PMLR, 2020, pp. 989-998.

Intelligence (UAI). Ed. by Jonas Peters and David Sontag. Vol. 124. Proceedings of