Entropy profiles and algebraic matroids

Tobias Boege

arXiv:2502.20355

Department of Mathematics and Statistics UiT The Arctic University of Norway

Discrete Mathematics & Geometry seminar, TU Berlin, 11 June 2025

Supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101110545.

Let ξ be a random variable taking finitely many values $\{1, \ldots, d\}$ with probabilities p_i .

► Its Shannon entropy is

$$H(\xi) \coloneqq -\sum_{i=1}^d p_i \log p_i$$
, where $0 \log 0 \coloneqq 0$

Let ξ be a random variable taking finitely many values $\{1, \ldots, d\}$ with probabilities p_i .

► Its Shannon entropy is

$$H(\xi) \coloneqq -\sum_{i=1}^d p_i \log p_i$$
, where $0 \log 0 \coloneqq 0$.

• A random vector $\xi = (\xi_i : i \in N)$ has 2^N marginals.

Let ξ be a random variable taking finitely many values $\{1, \ldots, d\}$ with probabilities p_i .

► Its Shannon entropy is

$$H(\xi) \coloneqq -\sum_{i=1}^d p_i \log p_i$$
, where $0 \log 0 \coloneqq 0$.

- A random vector $\xi = (\xi_i : i \in N)$ has 2^N marginals.
- ▶ The collection of all the marginal entropies is the entropy profile $h_{\xi}: 2^N \to \mathbb{R}$.

Let ξ be a random variable taking finitely many values $\{1, \ldots, d\}$ with probabilities p_i .

► Its Shannon entropy is

$$H(\xi) \coloneqq -\sum_{i=1}^d p_i \log p_i$$
, where $0 \log 0 \coloneqq 0$.

- A random vector $\xi = (\xi_i : i \in N)$ has 2^N marginals.
- The collection of all the marginal entropies is the entropy profile $h_{\xi}: 2^N \to \mathbb{R}$.
- ► Entropy profiles are "rank functions": monotone and submodular.

Entropy as information

Figure: Entropy of a binary random variable ξ as a function of $p = p(\xi = \text{heads})$.

Entropy profile encodes qualitative information about the system of random variables:

Entropy profile encodes qualitative information about the system of random variables:

• Subvector ξ_I is functionally dependent on ξ_K if and only if $h_{\xi}(I \cup K) = h_{\xi}(K)$.

Entropy profile encodes qualitative information about the system of random variables:

- Subvector ξ_I is functionally dependent on ξ_K if and only if $h_{\xi}(I \cup K) = h_{\xi}(K)$.
- ► Subvectors ξ_I and ξ_J are conditionally independent given ξ_K if and only if $h_{\xi}(I \cup K) + h_{\xi}(J \cup K) = h_{\xi}(I \cup J \cup K) + h_{\xi}(K)$.

Entropy profile encodes qualitative information about the system of random variables:

- Subvector ξ_I is functionally dependent on ξ_K if and only if $h_{\xi}(I \cup K) = h_{\xi}(K)$.
- ► Subvectors ξ_I and ξ_J are conditionally independent given ξ_K if and only if $h_{\xi}(I \cup K) + h_{\xi}(J \cup K) = h_{\xi}(I \cup J \cup K) + h_{\xi}(K)$.

Many applications deal with random vectors only through their entropy profiles:

Entropy profile encodes qualitative information about the system of random variables:

- Subvector ξ_I is functionally dependent on ξ_K if and only if $h_{\xi}(I \cup K) = h_{\xi}(K)$.
- ► Subvectors ξ_I and ξ_J are conditionally independent given ξ_K if and only if $h_{\xi}(I \cup K) + h_{\xi}(J \cup K) = h_{\xi}(I \cup J \cup K) + h_{\xi}(K)$.

Many applications deal with random vectors only through their entropy profiles:

 Graphical models in statistics and causality are defined by CI assumptions (e.g., Bayesian networks and d-separation in graphs).

Entropy profile encodes qualitative information about the system of random variables:

- Subvector ξ_I is functionally dependent on ξ_K if and only if $h_{\xi}(I \cup K) = h_{\xi}(K)$.
- ► Subvectors ξ_I and ξ_J are conditionally independent given ξ_K if and only if $h_{\xi}(I \cup K) + h_{\xi}(J \cup K) = h_{\xi}(I \cup J \cup K) + h_{\xi}(K)$.

Many applications deal with random vectors only through their entropy profiles:

- Graphical models in statistics and causality are defined by CI assumptions (e.g., Bayesian networks and d-separation in graphs).
- Cryptographic protocols use FD and CI constraints to specify operation and information-theoretic security (e.g., secret sharing).

Entropy profile encodes qualitative information about the system of random variables:

- Subvector ξ_I is functionally dependent on ξ_K if and only if $h_{\xi}(I \cup K) = h_{\xi}(K)$.
- ► Subvectors ξ_I and ξ_J are conditionally independent given ξ_K if and only if $h_{\xi}(I \cup K) + h_{\xi}(J \cup K) = h_{\xi}(I \cup J \cup K) + h_{\xi}(K)$.

Many applications deal with random vectors only through their entropy profiles:

- Graphical models in statistics and causality are defined by CI assumptions (e.g., Bayesian networks and d-separation in graphs).
- Cryptographic protocols use FD and CI constraints to specify operation and information-theoretic security (e.g., secret sharing).
- Quantities in information theory are defined by linear optimization over entropy profiles with FD and Cl constraints (e.g., common information).

• Given: participants $N = \{1, ..., n\}$ and a set of qualified subsets $\mathscr{Q} \subseteq 2^N$.

- Given: participants $N = \{1, ..., n\}$ and a set of qualified subsets $\mathscr{Q} \subseteq 2^N$.
- Devise a scheme to distribute shares s_p of a randomly generated secret s to the participants such that

- Given: participants $N = \{1, ..., n\}$ and a set of qualified subsets $\mathscr{Q} \subseteq 2^N$.
- Devise a scheme to distribute shares s_p of a randomly generated secret s to the participants such that
 - \blacktriangleright s_p is a function of s,

- Given: participants $N = \{1, ..., n\}$ and a set of qualified subsets $\mathscr{Q} \subseteq 2^N$.
- Devise a scheme to distribute shares s_p of a randomly generated secret s to the participants such that
 - \blacktriangleright s_p is a function of s,
 - ▶ *s* is a function of $s_A = (s_p : p \in A)$ whenever $A \in \mathscr{Q}$,

- Given: participants $N = \{1, ..., n\}$ and a set of qualified subsets $\mathscr{Q} \subseteq 2^N$.
- Devise a scheme to distribute shares s_p of a randomly generated secret s to the participants such that
 - ▶ s_p is a function of s,
 - ▶ *s* is a function of $s_A = (s_p : p \in A)$ whenever $A \in \mathscr{Q}$,
 - ▶ *s* is independent of s_B whenever $B \notin \mathcal{Q}$.

- Given: participants $N = \{1, ..., n\}$ and a set of qualified subsets $\mathscr{Q} \subseteq 2^N$.
- Devise a scheme to distribute shares s_p of a randomly generated secret s to the participants such that
 - ▶ s_p is a function of s,
 - ▶ *s* is a function of $s_A = (s_p : p \in A)$ whenever $A \in \mathscr{Q}$,
 - ▶ *s* is independent of s_B whenever $B \notin \mathcal{Q}$.
- ▶ The information ratio is $\sigma(h) = 1/h(s) \max \{h(p) : p \in N\}$.

- Given: participants $N = \{1, ..., n\}$ and a set of qualified subsets $\mathscr{Q} \subseteq 2^N$.
- Devise a scheme to distribute shares s_p of a randomly generated secret s to the participants such that
 - ▶ s_p is a function of s,
 - ▶ *s* is a function of $s_A = (s_p : p \in A)$ whenever $A \in \mathscr{Q}$,
 - ▶ *s* is independent of s_B whenever $B \notin \mathcal{Q}$.
- ▶ The information ratio is $\sigma(h) = 1/h(s) \max \{h(p) : p \in N\}$.

► The optimal information ratio \(\alpha\) = inf \{\(\sigma(h): h \= \mathcal{D}\)\} can be determined by linear optimization over the set of all entropy profiles satisfying linear conditions.

Let $H_N^* \subseteq \mathbb{R}^{2^N}$ consist of all h_{ξ} where ξ is an *N*-variate discrete random vector. H_N^* is the image of $\bigcup_{d_1=1}^{\infty} \cdots \bigcup_{d_n=1}^{\infty} \Delta(d_1, \ldots, d_n)$ under the transcendental map $\xi \mapsto h_{\xi}$.

Let $H_N^* \subseteq \mathbb{R}^{2^N}$ consist of all h_{ξ} where ξ is an *N*-variate discrete random vector. H_N^* is the image of $\bigcup_{d_1=1}^{\infty} \cdots \bigcup_{d_n=1}^{\infty} \Delta(d_1, \ldots, d_n)$ under the transcendental map $\xi \mapsto h_{\xi}$.

Theorem ([ZY97], [Mat07b])

 $\overline{H_N^*}$ is a convex cone of dimension $2^N - 1$. Furthermore relint $(\overline{H_N^*}) \subseteq H_N^*$.

Let $H_N^* \subseteq \mathbb{R}^{2^N}$ consist of all h_{ξ} where ξ is an *N*-variate discrete random vector. H_N^* is the image of $\bigcup_{d_1=1}^{\infty} \cdots \bigcup_{d_n=1}^{\infty} \Delta(d_1, \ldots, d_n)$ under the transcendental map $\xi \mapsto h_{\xi}$.

Theorem ([ZY97], [Mat07b])

 $\overline{H_N^*}$ is a convex cone of dimension $2^N - 1$. Furthermore relint $(\overline{H_N^*}) \subseteq H_N^*$.

Linear optimization works well! Elements of the dual cone (linear information inequalities) can give bounds for optimization problems.

Let $H_N^* \subseteq \mathbb{R}^{2^N}$ consist of all h_{ξ} where ξ is an *N*-variate discrete random vector. H_N^* is the image of $\bigcup_{d_1=1}^{\infty} \cdots \bigcup_{d_n=1}^{\infty} \Delta(d_1, \ldots, d_n)$ under the transcendental map $\xi \mapsto h_{\xi}$.

Theorem ([ZY97], [Mat07b])

 $\overline{H_N^*}$ is a convex cone of dimension $2^N - 1$. Furthermore relint $(\overline{H_N^*}) \subseteq H_N^*$.

- Linear optimization works well! Elements of the dual cone (linear information inequalities) can give bounds for optimization problems.
- ▶ [DFZ11] contains over 200 inequalities and several parametric families.

Let $H_N^* \subseteq \mathbb{R}^{2^N}$ consist of all h_{ξ} where ξ is an *N*-variate discrete random vector. H_N^* is the image of $\bigcup_{d_1=1}^{\infty} \cdots \bigcup_{d_n=1}^{\infty} \Delta(d_1, \ldots, d_n)$ under the transcendental map $\xi \mapsto h_{\xi}$.

Theorem ([ZY97], [Mat07b])

 $\overline{H_N^*}$ is a convex cone of dimension $2^N - 1$. Furthermore relint $(\overline{H_N^*}) \subseteq H_N^*$.

- Linear optimization works well! Elements of the dual cone (linear information inequalities) can give bounds for optimization problems.
- ▶ [DFZ11] contains over 200 inequalities and several parametric families.

Theorem ([Mat07a])

 $\overline{H_N^*}$ is not polyhedral for $|N| \ge 4$.

A conditional information inequality is an inequality valid for all entropy profiles satisfying some linear equations.

A conditional information inequality is an inequality valid for all entropy profiles satisfying some linear equations.

 $H(A:B) = H(A:B \mid C) = 0 \implies H(C:D \mid A) + H(C:D \mid B) + H(A:B) \ge H(C:D)$ (1)

A conditional information inequality is an inequality valid for all entropy profiles satisfying some linear equations.

 $H(A:B) = H(A:B \mid C) = 0 \implies H(C:D \mid A) + H(C:D \mid B) + H(A:B) \ge H(C:D)$ (1)

▶ This is useful in situations where $A \perp\!\!\!\perp B$ and $A \perp\!\!\!\perp B \mid C$.

A conditional information inequality is an inequality valid for all entropy profiles satisfying some linear equations.

 $H(A:B) = H(A:B \mid C) = 0 \implies H(C:D \mid A) + H(C:D \mid B) + H(A:B) \ge H(C:D)$ (1)

- ▶ This is useful in situations where $A \perp\!\!\!\perp B$ and $A \perp\!\!\!\perp B \mid C$.
- A natural question is whether this inequality can be lifted to an unconditional one by introducing Lagrange multipliers:

 $\lambda H(A:B) + \mu H(A:B \mid C) + H(C:D \mid A) + H(C:D \mid B) + H(A:B) \ge H(C:D).$ (2)

A conditional information inequality is an inequality valid for all entropy profiles satisfying some linear equations.

 $H(A:B) = H(A:B \mid C) = 0 \implies H(C:D \mid A) + H(C:D \mid B) + H(A:B) \ge H(C:D)$ (1)

- ▶ This is useful in situations where $A \perp\!\!\!\perp B$ and $A \perp\!\!\!\perp B \mid C$.
- A natural question is whether this inequality can be lifted to an unconditional one by introducing Lagrange multipliers:

 $\lambda H(A:B) + \mu H(A:B \mid C) + H(C:D \mid A) + H(C:D \mid B) + H(A:B) \ge H(C:D).$ (2)

► Kaced and Romashchenko [KR13] proved that (1) is essentially conditional, i.e., there are no $\lambda, \mu \in \mathbb{R}$ such that (2) holds.

Consider the affine plane over a finite field \mathbb{F}_q .

Consider the affine plane over a finite field \mathbb{F}_q .

► Choose two points *A* and *B* with different *x*-coordinates uniformly at random.

В

Α

Consider the affine plane over a finite field \mathbb{F}_q .

- ► Choose two points *A* and *B* with different *x*-coordinates uniformly at random.
- ► Draw the line *C* through *A* and *B*.

Consider the affine plane over a finite field \mathbb{F}_q .

- ► Choose two points *A* and *B* with different *x*-coordinates uniformly at random.
- ▶ Draw the line *C* through *A* and *B*.
- Choose a non-degenerate parabola D through A and B uniformly at random.

		в
	D	\prec
	С	\backslash
A		

Consider the affine plane over a finite field \mathbb{F}_q .

- ► Choose two points *A* and *B* with different *x*-coordinates uniformly at random.
- \blacktriangleright Draw the line C through A and B.
- Choose a non-degenerate parabola D through A and B uniformly at random.

The coordinates of (A, B, C, D) define the support of a distribution on $\mathbb{F}_q^2 \times \mathbb{F}_q^2 \times \mathbb{F}_q^2 \times \mathbb{F}_q^3$ and the distribution is uniform on this set.

► Elementary parameter counting yields

$$H(A:B) = H(A:B | C) = \log(q) - \log(q-1)$$
 and
 $H(C:D | A) = H(C:D | B) = \log(q-1) - \log(q-2).$
The Kaced–Romashchenko* configuration

Elementary parameter counting yields

$$H(A:B) = H(A:B | C) = \log(q) - \log(q-1)$$
 and
 $H(C:D | A) = H(C:D | B) = \log(q-1) - \log(q-2).$

▶ However, $H(C:D) = \log(q) - \log(q-1) + \log(2)$. The log(2) term reflects that only half of all pairs (C, D) defined over \mathbb{F}_q intersect in two \mathbb{F}_q -rational points!

The Kaced–Romashchenko* configuration

Elementary parameter counting yields

$$H(A:B) = H(A:B \mid C) = \log(q) - \log(q-1)$$
 and
 $H(C:D \mid A) = H(C:D \mid B) = \log(q-1) - \log(q-2).$

▶ However, $H(C:D) = \log(q) - \log(q-1) + \log(2)$. The log(2) term reflects that only half of all pairs (C, D) defined over \mathbb{F}_q intersect in two \mathbb{F}_q -rational points!

Hence, for this distribution

$$\lambda H(A:B) + \mu H(A:B \mid C) + H(C:D \mid A) + H(C:D \mid B) + H(A:B) - H(C:D)$$
$$= (\lambda + \mu) \log\left(\frac{q}{q-1}\right) + 2\log\left(\frac{q-1}{q-2}\right) - \log 2$$

The Kaced–Romashchenko* configuration

Elementary parameter counting yields

$$H(A:B) = H(A:B | C) = \log(q) - \log(q-1)$$
 and
 $H(C:D | A) = H(C:D | B) = \log(q-1) - \log(q-2).$

▶ However, $H(C:D) = \log(q) - \log(q-1) + \log(2)$. The log(2) term reflects that only half of all pairs (C, D) defined over \mathbb{F}_q intersect in two \mathbb{F}_q -rational points!

Hence, for this distribution

$$\lambda H(A:B) + \mu H(A:B \mid C) + H(C:D \mid A) + H(C:D \mid B) + H(A:B) - H(C:D)$$
$$= (\lambda + \mu) \log\left(\frac{q}{q-1}\right) + 2\log\left(\frac{q-1}{q-2}\right) - \log 2$$

which becomes negative for any λ , μ as $q \to \infty$.

► Kaced and Romashchenko define an irreducible (quasiaffine) variety V and equip its \mathbb{F}_q -rational points with the uniform distribution $\rightarrow \xi(\mathbb{F}_q)$.

- ► Kaced and Romashchenko define an irreducible (quasiaffine) variety V and equip its \mathbb{F}_q -rational points with the uniform distribution $\rightarrow \xi(\mathbb{F}_q)$.
- ▶ They use dimensions and facts from number theory to compute entropies.

- ► Kaced and Romashchenko define an irreducible (quasiaffine) variety V and equip its \mathbb{F}_q -rational points with the uniform distribution $\rightarrow \xi(\mathbb{F}_q)$.
- ▶ They use dimensions and facts from number theory to compute entropies.
- Clearly $H(\xi(\mathbb{F}_q)) = \log |V(\mathbb{F}_q)| \rightarrow \text{point counting!}$

- ► Kaced and Romashchenko define an irreducible (quasiaffine) variety V and equip its \mathbb{F}_q -rational points with the uniform distribution $\rightarrow \xi(\mathbb{F}_q)$.
- ▶ They use dimensions and facts from number theory to compute entropies.
- Clearly $H(\xi(\mathbb{F}_q)) = \log |V(\mathbb{F}_q)| \rightarrow \text{point counting!}$
- Entropies of marginals are more complicated. We have to deal with a coordinate projection of V in which each point is weighted by the size of its fiber:

$$\Pr[\xi_{l}(\mathbb{F}_{q})=a]=\frac{|V(\mathbb{F}_{q})\cap\pi_{l}^{-1}(a)|}{|V(\mathbb{F}_{q})|}.$$

- Kaced and Romashchenko define an irreducible (quasiaffine) variety V and equip its 𝔽_q-rational points with the uniform distribution → ξ(𝔽_q).
- ▶ They use dimensions and facts from number theory to compute entropies.
- Clearly $H(\xi(\mathbb{F}_q)) = \log |V(\mathbb{F}_q)| \rightarrow \text{point counting!}$
- Entropies of marginals are more complicated. We have to deal with a coordinate projection of V in which each point is weighted by the size of its fiber:

$$\Pr[\xi_I(\mathbb{F}_q) = a] = \frac{|V(\mathbb{F}_q) \cap \pi_I^{-1}(a)|}{|V(\mathbb{F}_q)|}.$$

Can this be done by computer algebra?

 \mathbb{F}_q -definable sets are sets of the form $\varphi(\mathbb{F}_q^n; b) = \{ a \in \mathbb{F}_q^n : \mathbb{F}_q \models \varphi(a, b) \}$ where $\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ is a first-order formula in the language of rings and $b \in \mathbb{F}_q^m$.

 \mathbb{F}_q -definable sets are sets of the form $\varphi(\mathbb{F}_q^n; b) = \{ a \in \mathbb{F}_q^n : \mathbb{F}_q \models \varphi(a, b) \}$ where $\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ is a first-order formula in the language of rings and $b \in \mathbb{F}_q^m$.

► More briefly: the smallest set of sets containing all varieties defined over F_q and closed under complement and projection.

 \mathbb{F}_q -definable sets are sets of the form $\varphi(\mathbb{F}_q^n; b) = \{ a \in \mathbb{F}_q^n : \mathbb{F}_q \models \varphi(a, b) \}$ where $\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ is a first-order formula in the language of rings and $b \in \mathbb{F}_q^m$.

► More briefly: the smallest set of sets containing all varieties defined over F_q and closed under complement and projection.

Theorem ([CDM92])

Consider a formula $\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m)$. There exist finitely many formulas $\psi_k(y_1, \ldots, y_m)$, indexed by $k \in K$, with accompanying $\mu_k \in \mathbb{Q}$ and $d_k \in \mathbb{N}$ such that

 \mathbb{F}_q -definable sets are sets of the form $\varphi(\mathbb{F}_q^n; b) = \{ a \in \mathbb{F}_q^n : \mathbb{F}_q \models \varphi(a, b) \}$ where $\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ is a first-order formula in the language of rings and $b \in \mathbb{F}_q^m$.

► More briefly: the smallest set of sets containing all varieties defined over F_q and closed under complement and projection.

Theorem ([CDM92])

Consider a formula $\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m)$. There exist finitely many formulas $\psi_k(y_1, \ldots, y_m)$, indexed by $k \in K$, with accompanying $\mu_k \in \mathbb{Q}$ and $d_k \in \mathbb{N}$ such that for every sufficiently large finite field \mathbb{F}_q and every $b \in \mathbb{F}_q^m$:

 \mathbb{F}_q -definable sets are sets of the form $\varphi(\mathbb{F}_q^n; b) = \{ a \in \mathbb{F}_q^n : \mathbb{F}_q \models \varphi(a, b) \}$ where $\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ is a first-order formula in the language of rings and $b \in \mathbb{F}_q^m$.

► More briefly: the smallest set of sets containing all varieties defined over F_q and closed under complement and projection.

Theorem ([CDM92])

Consider a formula $\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m)$. There exist finitely many formulas $\psi_k(y_1, \ldots, y_m)$, indexed by $k \in K$, with accompanying $\mu_k \in \mathbb{Q}$ and $d_k \in \mathbb{N}$ such that for every sufficiently large finite field \mathbb{F}_q and every $b \in \mathbb{F}_q^m$:

• There exists a unique $k \in K$ such that $\mathbb{F}_q \models \psi_k(b)$.

 \mathbb{F}_q -definable sets are sets of the form $\varphi(\mathbb{F}_q^n; b) = \{ a \in \mathbb{F}_q^n : \mathbb{F}_q \models \varphi(a, b) \}$ where $\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ is a first-order formula in the language of rings and $b \in \mathbb{F}_q^m$.

► More briefly: the smallest set of sets containing all varieties defined over F_q and closed under complement and projection.

Theorem ([CDM92])

Consider a formula $\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m)$. There exist finitely many formulas $\psi_k(y_1, \ldots, y_m)$, indexed by $k \in K$, with accompanying $\mu_k \in \mathbb{Q}$ and $d_k \in \mathbb{N}$ such that for every sufficiently large finite field \mathbb{F}_q and every $b \in \mathbb{F}_q^m$:

- There exists a unique $k \in K$ such that $\mathbb{F}_q \models \psi_k(b)$.
- $\mathbb{F}_q \models \psi_k(b)$ if and only if $|\varphi(\mathbb{F}_q^n; b)| = \mu_k q^{d_k} + \mathcal{O}(\mu_k q^{d_k-1/2})$.

Definition

Let X be an \mathbb{F} -definable set. A *fiber decomposition* with respect to $\pi_I(X)$ is a finite family of \mathbb{F} -definable sets Y_k , called *cells*,

Definition

Let X be an \mathbb{F} -definable set. A *fiber decomposition* with respect to $\pi_I(X)$ is a finite family of \mathbb{F} -definable sets Y_k , called *cells*, together with non-negative $\mu_k \in \mathbb{Q}$ and $d_k \in \mathbb{N}$, for $k \in K$, such that for all sufficiently large \mathbb{G}/\mathbb{F} :

Definition

Let X be an \mathbb{F} -definable set. A *fiber decomposition* with respect to $\pi_I(X)$ is a finite family of \mathbb{F} -definable sets Y_k , called *cells*, together with non-negative $\mu_k \in \mathbb{Q}$ and $d_k \in \mathbb{N}$, for $k \in K$, such that for all sufficiently large \mathbb{G}/\mathbb{F} :

▶
$$\mathbb{G}^{I} = \bigsqcup_{k \in K} Y_{k}(\mathbb{G})$$
, and

Definition

Let X be an \mathbb{F} -definable set. A *fiber decomposition* with respect to $\pi_I(X)$ is a finite family of \mathbb{F} -definable sets Y_k , called *cells*, together with non-negative $\mu_k \in \mathbb{Q}$ and $d_k \in \mathbb{N}$, for $k \in K$, such that for all sufficiently large \mathbb{G}/\mathbb{F} :

▶
$$\mathbb{G}' = \bigsqcup_{k \in K} Y_k(\mathbb{G})$$
, and

$$\blacktriangleright |X(\mathbb{G}) \cap \pi_I^{-1}(a)| = \mu_k |\mathbb{G}|^{d_k} + \mathcal{O}(\mu_k |\mathbb{G}|^{d_k - 1/2}) \text{ for each } a \in Y_k(\mathbb{G}).$$

Definition

Let X be an \mathbb{F} -definable set. A *fiber decomposition* with respect to $\pi_I(X)$ is a finite family of \mathbb{F} -definable sets Y_k , called *cells*, together with non-negative $\mu_k \in \mathbb{Q}$ and $d_k \in \mathbb{N}$, for $k \in K$, such that for all sufficiently large \mathbb{G}/\mathbb{F} :

►
$$\mathbb{G}' = \bigsqcup_{k \in K} Y_k(\mathbb{G})$$
, and

$$\blacktriangleright \ |X(\mathbb{G}) \cap \pi_I^{-1}(a)| = \mu_k |\mathbb{G}|^{d_k} + \mathcal{O}(\mu_k |\mathbb{G}|^{d_k - 1/2}) \text{ for each } a \in Y_k(\mathbb{G}).$$

Theorem ([FHJ94])

Fiber decompositions are computable. Moreover, one can compute a bound $m \in \mathbb{N}$, numbers $d_k \in \mathbb{N}$ and non-negative $\mu_k \in \mathbb{Q}$ such that for every finite extension \mathbb{G}/\mathbb{F} :

$$|X(\mathbb{G})| = \mu_k |\mathbb{G}|^{d_k} + \mathcal{O}(\mu_k |\mathbb{G}|^{d_k - 1/2}), \text{ where } k \equiv [\mathbb{G} : \mathbb{F}] \pmod{m}.$$

Computability of the entropy profiles

Theorem

Let X be an \mathbb{F} -definable set in n free variables and $\xi(\mathbb{G})$ the uniform distribution on $X(\mathbb{G})$. For a projection $\pi_I(X)$ let $(Y_k : k \in K)$, be a fiber decomposition and set $X_k = X \cap \pi_I^{-1}(Y_k)$. For large enough \mathbb{G}/\mathbb{F} , the entropy profile satisfies

$$h_{\xi(\mathbb{G})}(I) = \sum_{\dim_{\mathbb{G}}(X_k) = \dim_{\mathbb{G}}(X)} \frac{\mu_{\mathbb{G}}(X_k)}{\mu_{\mathbb{G}}(X)} \log\left(\frac{\mu_{\mathbb{G}}(X)\mu_{\mathbb{G}}(Y_k)}{\mu_{\mathbb{G}}(X_k)} |\mathbb{G}|^{\dim_{\mathbb{G}}(Y_k)}\right) + \mathcal{O}\left(\frac{\log|\mathbb{G}|}{\sqrt{|\mathbb{G}|}}\right)$$

Computability of the entropy profiles

Theorem

Let X be an \mathbb{F} -definable set in n free variables and $\xi(\mathbb{G})$ the uniform distribution on $X(\mathbb{G})$. For a projection $\pi_I(X)$ let $(Y_k : k \in K)$, be a fiber decomposition and set $X_k = X \cap \pi_I^{-1}(Y_k)$. For large enough \mathbb{G}/\mathbb{F} , the entropy profile satisfies

$$h_{\xi(\mathbb{G})}(I) = \sum_{\dim_{\mathbb{G}}(X_k) = \dim_{\mathbb{G}}(X)} \frac{\mu_{\mathbb{G}}(X_k)}{\mu_{\mathbb{G}}(X)} \log \left(\frac{\mu_{\mathbb{G}}(X)\mu_{\mathbb{G}}(Y_k)}{\mu_{\mathbb{G}}(X_k)} |\mathbb{G}|^{\dim_{\mathbb{G}}(Y_k)} \right) + \mathcal{O}\left(\frac{\log |\mathbb{G}|}{\sqrt{|\mathbb{G}|}} \right).$$

The leading term does not vanish, can be effectively computed from a defining formula for X and is periodic in the extension degree [$\mathbb{G} : \mathbb{F}$].

Computability of the entropy profiles

Theorem

Let X be an \mathbb{F} -definable set in n free variables and $\xi(\mathbb{G})$ the uniform distribution on $X(\mathbb{G})$. For a projection $\pi_I(X)$ let $(Y_k : k \in K)$, be a fiber decomposition and set $X_k = X \cap \pi_I^{-1}(Y_k)$. For large enough \mathbb{G}/\mathbb{F} , the entropy profile satisfies

$$h_{\xi(\mathbb{G})}(I) = \sum_{\dim_{\mathbb{G}}(X_k) = \dim_{\mathbb{G}}(X)} \frac{\mu_{\mathbb{G}}(X_k)}{\mu_{\mathbb{G}}(X)} \log \left(\frac{\mu_{\mathbb{G}}(X)\mu_{\mathbb{G}}(Y_k)}{\mu_{\mathbb{G}}(X_k)} |\mathbb{G}|^{\dim_{\mathbb{G}}(Y_k)} \right) + \mathcal{O}\left(\frac{\log |\mathbb{G}|}{\sqrt{|\mathbb{G}|}} \right).$$

The leading term does not vanish, can be effectively computed from a defining formula for X and is periodic in the extension degree [$\mathbb{G} : \mathbb{F}$].

The sequence (¹/_{log|G|} h_{ξ(G)} : G ⊇ 𝔽) has finitely many convergent subsequences and their (rational!) limits can all be computed.

Theorem

Moreover, if X is an \mathbb{F} -irreducible algebraic variety, then there exists a tower of finite fields $\mathbb{F} = \mathbb{G}_0 \subseteq \mathbb{G}_1 \subseteq \ldots$ with

$$\lim_{n\to\infty}\frac{1}{\log|\mathbb{G}_n|}h_{\xi(\mathbb{G}_n)}(I)=\dim\pi_I(X(\overline{\mathbb{F}})), \text{ for every } I\subseteq N.$$

Theorem

Moreover, if X is an \mathbb{F} -irreducible algebraic variety, then there exists a tower of finite fields $\mathbb{F} = \mathbb{G}_0 \subseteq \mathbb{G}_1 \subseteq \ldots$ with

$$\lim_{n\to\infty}\frac{1}{\log|\mathbb{G}_n|}h_{\xi(\mathbb{G}_n)}(I)=\dim\pi_I(X(\overline{\mathbb{F}})), \text{ for every } I\subseteq N.$$

Corollary ([Mat24])

Algebraic matroids are almost-entropic.

Theorem

Moreover, if X is an \mathbb{F} -irreducible algebraic variety, then there exists a tower of finite fields $\mathbb{F} = \mathbb{G}_0 \subseteq \mathbb{G}_1 \subseteq \ldots$ with

$$\lim_{n\to\infty}\frac{1}{\log|\mathbb{G}_n|}h_{\xi(\mathbb{G}_n)}(I)=\dim\pi_I(X(\overline{\mathbb{F}})), \text{ for every } I\subseteq N$$

Corollary ([Mat24])

Algebraic matroids are almost-entropic.

► Algebraic independence in the limit is explained through diminishing stochastic dependence among the coordinate functions.

Theorem

Moreover, if X is an \mathbb{F} -irreducible algebraic variety, then there exists a tower of finite fields $\mathbb{F} = \mathbb{G}_0 \subseteq \mathbb{G}_1 \subseteq \ldots$ with

$$\lim_{n\to\infty}\frac{1}{\log|\mathbb{G}_n|}h_{\xi(\mathbb{G}_n)}(I)=\dim\pi_I(X(\overline{\mathbb{F}})), \text{ for every } I\subseteq N$$

Corollary ([Mat24])

Algebraic matroids are almost-entropic.

- Algebraic independence in the limit is explained through diminishing stochastic dependence among the coordinate functions.
- ▶ Entropy profile can be seen as a "valuated" refinement of the algebraic matroid.

► To eliminate x from the variety defined by x³ + ax² + bx + c = 0, stratify the triples (a, b, c) according to the number of rational roots of f(a, b, c) ∈ [x].

- ► To eliminate x from the variety defined by x³ + ax² + bx + c = 0, stratify the triples (a, b, c) according to the number of rational roots of f(a, b, c) ∈ [x].
- Let Ω be the splitting field of f over $\mathbb{F}(a, b, c)$ with Galois group $G = S_3$.

- ► To eliminate x from the variety defined by x³ + ax² + bx + c = 0, stratify the triples (a, b, c) according to the number of rational roots of f(a, b, c) ∈ 𝔽[x].
- Let Ω be the splitting field of f over $\mathbb{F}(a, b, c)$ with Galois group $G = S_3$.
- If f(a, b, c) is separable, it defines a Galois extension of F with cyclic Galois group G(a, b, c) ⊆ G.

- ► To eliminate x from the variety defined by x³ + ax² + bx + c = 0, stratify the triples (a, b, c) according to the number of rational roots of f(a, b, c) ∈ 𝔽[x].
- Let Ω be the splitting field of f over $\mathbb{F}(a, b, c)$ with Galois group $G = S_3$.
- If f(a, b, c) is separable, it defines a Galois extension of 𝔽 with cyclic Galois group G(a, b, c) ⊆ G.
- ► The number of rational roots of f(a, b, c) in \mathbb{F} is determined by the splitting type of f(a, b, c) in $\mathbb{F}[x]$ which corresponds to the conjugacy class of G(a, b, c) in G.

- ► To eliminate x from the variety defined by x³ + ax² + bx + c = 0, stratify the triples (a, b, c) according to the number of rational roots of f(a, b, c) ∈ 𝔽[x].
- Let Ω be the splitting field of f over $\mathbb{F}(a, b, c)$ with Galois group $G = S_3$.
- If f(a, b, c) is separable, it defines a Galois extension of 𝔽 with cyclic Galois group G(a, b, c) ⊆ G.
- ▶ The number of rational roots of f(a, b, c) in \mathbb{F} is determined by the splitting type of f(a, b, c) in $\mathbb{F}[x]$ which corresponds to the conjugacy class of G(a, b, c) in G.
- ► The Chebotarev density theorem computes the density of triples with given conjugacy class C:

$$\frac{|\mathcal{C}|}{[\Omega:\mathbb{F}(a,b,c)]}=\frac{|\mathcal{C}|}{6},$$

- ► To eliminate x from the variety defined by x³ + ax² + bx + c = 0, stratify the triples (a, b, c) according to the number of rational roots of f(a, b, c) ∈ 𝔽[x].
- Let Ω be the splitting field of f over $\mathbb{F}(a, b, c)$ with Galois group $G = S_3$.
- If f(a, b, c) is separable, it defines a Galois extension of 𝔽 with cyclic Galois group G(a, b, c) ⊆ G.
- ▶ The number of rational roots of f(a, b, c) in \mathbb{F} is determined by the splitting type of f(a, b, c) in $\mathbb{F}[x]$ which corresponds to the conjugacy class of G(a, b, c) in G.

Splitting type	[1, 1, 1]	[1, 2]	[3]	$[1, 1^2]$	$[1^3]$
Conjugacy class	id	(1 2)	(1 2 3)		—
Density	1/6	3/6	2/6	0	0
Rational roots	3	1	0	2	1

In greater generality, Galois stratification requires:

▶ Basic normal (irreducible) decomposition over \mathbb{F} .

In greater generality, Galois stratification requires:

- ▶ Basic normal (irreducible) decomposition over \mathbb{F} .
- Computing the splitting field Ω and Galois group G of a polynomial over F(V) where V is an irreducible F-variety.

In greater generality, Galois stratification requires:

- ▶ Basic normal (irreducible) decomposition over \mathbb{F} .
- Computing the splitting field Ω and Galois group G of a polynomial over F(V) where V is an irreducible F-variety.
- Computing the relative algebraic closure of \mathbb{F} in Ω .

In greater generality, Galois stratification requires:

- ▶ Basic normal (irreducible) decomposition over \mathbb{F} .
- Computing the splitting field Ω and Galois group G of a polynomial over 𝔽(V) where V is an irreducible 𝔽-variety.
- Computing the relative algebraic closure of ${\rm I\!F}$ in $\Omega.$
- ▶ Perhaps some relative integral closures of coordinate rings.
More details on Galois stratification

In greater generality, Galois stratification requires:

- ▶ Basic normal (irreducible) decomposition over \mathbb{F} .
- Computing the splitting field Ω and Galois group G of a polynomial over F(V) where V is an irreducible F-variety.
- Computing the relative algebraic closure of \mathbb{F} in Ω .
- ▶ Perhaps some relative integral closures of coordinate rings.
- Working with conjugacy classes of cyclic subgroups in G.

More details on Galois stratification

In greater generality, Galois stratification requires:

- ▶ Basic normal (irreducible) decomposition over \mathbb{F} .
- Computing the splitting field Ω and Galois group G of a polynomial over F(V) where V is an irreducible F-variety.
- Computing the relative algebraic closure of \mathbb{F} in Ω .
- ▶ Perhaps some relative integral closures of coordinate rings.
- Working with conjugacy classes of cyclic subgroups in G.

Algorithms are given in [FJ23] but with little regard for the state of the art in computer algebra.

More details on Galois stratification

In greater generality, Galois stratification requires:

- ▶ Basic normal (irreducible) decomposition over \mathbb{F} .
- Computing the splitting field Ω and Galois group G of a polynomial over F(V) where V is an irreducible F-variety.
- Computing the relative algebraic closure of \mathbb{F} in Ω .
- ▶ Perhaps some relative integral closures of coordinate rings.
- Working with conjugacy classes of cyclic subgroups in G.

Algorithms are given in [FJ23] but with little regard for the state of the art in computer algebra. Is it possible to produce an implementation in Oscar?

References I

[Boe25] Tobias Boege. The entropy profiles of a definable set over finite fields. 2025. arXiv: 2502.20355 [cs.IT].

- [CDM92] Zoé Chatzidakis, Lou van den Dries, and Angus Macintyre. "Definable sets over finite fields". In: J. Reine Angew. Math. 427 (1992), pp. 107–135.
- [DFZ11] Randall Dougherty, Chris Freiling, and Kenneth Zeger. Non-Shannon Information Inequalities in Four Random Variables. 2011. arXiv: 1104.3602 [cs.IT].
- [FHJ94] Michael D. Fried, Dan Haran, and Moshe Jarden. "Effective counting of the points of definable sets over finite fields". In: Isr. J. Math. 85.1-3 (1994), pp. 103–133. DOI: 10.1007/BF02758639.
- [FJ23] Michael D. Fried and Moshe Jarden. *Field arithmetic*. 4th corrected edition. Vol. 11.
 Ergeb. Math. Grenzgeb., 3. Folge. Springer, 2023. ISBN: 978-3-031-28019-1;
 978-3-031-28022-1; 978-3-031-28020-7. DOI: 10.1007/978-3-031-28020-7.
- [KR13] Tarik Kaced and Andrei Romashchenko. "Conditional information inequalities for entropic and almost entropic points". In: IEEE Trans. Inf. Theory 59.11 (2013), pp. 7149–7167. DOI: 10.1109/TIT.2013.2274614.

References II

- [Mat07a] František Matúš. "Infinitely many information inequalities". In: Proceedings of the 2007 IEEE International Symposium on Information Theory. Institute of Electrical and Electronics Engineers (IEEE), 2007, pp. 41–44. DOI: 10.1109/ISIT.2007.4557201.
- [Mat07b] František Matúš. "Two constructions on limits of entropy functions.". In: IEEE Trans. Inf. Theory 53.1 (2007), pp. 320–330. DOI: 10.1109/TIT.2006.887090.
- [Mat24] František Matúš. "Algebraic matroids are almost entropic". In: Proc. Am. Math. Soc. 152.1 (2024), pp. 1–6. DOI: 10.1090/proc/13846.
- [ZY97] Zhen Zhang and Raymond W. Yeung. "A non-Shannon-type conditional inequality of information quantities". In: IEEE Trans. Inf. Theory 43.6 (1997), pp. 1982–1986. DOI: 10.1109/18.641561.