
Reproducibility in computational mathematics
A hands-on session

Tobias Boege

Research Data in Discrete Mathematics,
MPI-MiS Leipzig,
14 March 2023

1 / 8

Reproducibility

Research Data

In this talk:

▸ Reproducibility: how to ensure that independent repetitions of an experiment
yield consistent results. (Ideally without contacting the original authors.)

Not in this talk:

▸ Correctness: how to produce correct results.
▸ Certification: how to allow verification of claims without reproducing data.

1 / 8

Reproducibility

Research Data

In this talk:

▸ Reproducibility: how to ensure that independent repetitions of an experiment
yield consistent results. (Ideally without contacting the original authors.)

Not in this talk:

▸ Correctness: how to produce correct results.
▸ Certification: how to allow verification of claims without reproducing data.

2 / 8

The reproducibility dilemma

Research Data

\¿

\¿

▸ Computers help us generate and use large amounts of data.
▸ Reproducibility suffers from rapidly changing computing environments.

▸ Software does not compile anymore or changes behavior.
▸ Dependencies or special setup procedures are not documented.
▸ Proprietary or closed-source software cannot be obtained or repaired.

2 / 8

The reproducibility dilemma

Research Data

\¿

\¿

▸ Computers help us generate and use large amounts of data.
▸ Reproducibility suffers from rapidly changing computing environments.
▸ Software does not compile anymore or changes behavior.

▸ Dependencies or special setup procedures are not documented.
▸ Proprietary or closed-source software cannot be obtained or repaired.

2 / 8

The reproducibility dilemma

Research Data

\¿

\¿

▸ Computers help us generate and use large amounts of data.
▸ Reproducibility suffers from rapidly changing computing environments.
▸ Software does not compile anymore or changes behavior.
▸ Dependencies or special setup procedures are not documented.

▸ Proprietary or closed-source software cannot be obtained or repaired.

2 / 8

The reproducibility dilemma

Research Data

\¿

\¿

▸ Computers help us generate and use large amounts of data.
▸ Reproducibility suffers from rapidly changing computing environments.
▸ Software does not compile anymore or changes behavior.
▸ Dependencies or special setup procedures are not documented.
▸ Proprietary or closed-source software cannot be obtained or repaired.

3 / 8

Story 1: Getting the job done

hydra: /opt/local/scip/8.0.3/bin/scip

my laptop: /Users/me/Documents/scipoptsuite-8.0.2/scip/bin/scip

const scipexe = "/Users/me/Documents/scipoptsuite-8.0.2/scip/bin/scip"

function scip(filename, outputname)

run(`$scipexe -f $filename -l $outputname -q`);

end

▸ Ad-hoc installation of the currently latest version of SCIP.
▸ Hard-coded path for two computing environments with different setup.
▸ Solution: Make sure scip is always in PATH.
▸ Bonus question: Is SCIP output reproducible?

3 / 8

Story 1: Getting the job done

hydra: /opt/local/scip/8.0.3/bin/scip

my laptop: /Users/me/Documents/scipoptsuite-8.0.2/scip/bin/scip

const scipexe = "/Users/me/Documents/scipoptsuite-8.0.2/scip/bin/scip"

function scip(filename, outputname)

run(`$scipexe -f $filename -l $outputname -q`);

end

▸ Ad-hoc installation of the currently latest version of SCIP.
▸ Hard-coded path for two computing environments with different setup.

▸ Solution: Make sure scip is always in PATH.
▸ Bonus question: Is SCIP output reproducible?

3 / 8

Story 1: Getting the job done

hydra: /opt/local/scip/8.0.3/bin/scip

my laptop: /Users/me/Documents/scipoptsuite-8.0.2/scip/bin/scip

const scipexe = "/Users/me/Documents/scipoptsuite-8.0.2/scip/bin/scip"

function scip(filename, outputname)

run(`$scipexe -f $filename -l $outputname -q`);

end

▸ Ad-hoc installation of the currently latest version of SCIP.
▸ Hard-coded path for two computing environments with different setup.
▸ Solution: Make sure scip is always in PATH.

▸ Bonus question: Is SCIP output reproducible?

3 / 8

Story 1: Getting the job done

hydra: /opt/local/scip/8.0.3/bin/scip

my laptop: /Users/me/Documents/scipoptsuite-8.0.2/scip/bin/scip

const scipexe = "/Users/me/Documents/scipoptsuite-8.0.2/scip/bin/scip"

function scip(filename, outputname)

run(`$scipexe -f $filename -l $outputname -q`);

end

▸ Ad-hoc installation of the currently latest version of SCIP.
▸ Hard-coded path for two computing environments with different setup.
▸ Solution: Make sure scip is always in PATH.
▸ Bonus question: Is SCIP output reproducible?

4 / 8

Story 2: Lack of interfaces

https://github.com/zvihr/algebraic-matroids

▸ Switching between software requires manual conversion of data.
▸ Not really software — more a description of software we wish existed.
▸ Solution (nowadays): Implement it in OSCAR.

https://github.com/zvihr/algebraic-matroids

4 / 8

Story 2: Lack of interfaces

https://github.com/zvihr/algebraic-matroids

▸ Switching between software requires manual conversion of data.
▸ Not really software — more a description of software we wish existed.

▸ Solution (nowadays): Implement it in OSCAR.

https://github.com/zvihr/algebraic-matroids

4 / 8

Story 2: Lack of interfaces

https://github.com/zvihr/algebraic-matroids

▸ Switching between software requires manual conversion of data.
▸ Not really software — more a description of software we wish existed.
▸ Solution (nowadays): Implement it in OSCAR.

https://github.com/zvihr/algebraic-matroids

5 / 8

Story 3: Dying languages

http://web.archive.org/web/20070720064410/http:

//atrey.karlin.mff.cuni.cz/~simecek/skola/models/

▸ Data meanwhile deleted from institute website.
▸ GNU Pascal compiler for programs hard to obtain.

▸ Even active programming language communities only care about
reported problems which surface when code is actively used.

▸ Hardly documented compiler-specific, binary floating point data format.
▸ Reimplementation: https://github.com/taboege/simecek-tools.

http://web.archive.org/web/20070720064410/http://atrey.karlin.mff.cuni.cz/~simecek/skola/models/
http://web.archive.org/web/20070720064410/http://atrey.karlin.mff.cuni.cz/~simecek/skola/models/
https://github.com/taboege/simecek-tools

5 / 8

Story 3: Dying languages

http://web.archive.org/web/20070720064410/http:

//atrey.karlin.mff.cuni.cz/~simecek/skola/models/

▸ Data meanwhile deleted from institute website.

▸ GNU Pascal compiler for programs hard to obtain.
▸ Even active programming language communities only care about

reported problems which surface when code is actively used.

▸ Hardly documented compiler-specific, binary floating point data format.
▸ Reimplementation: https://github.com/taboege/simecek-tools.

http://web.archive.org/web/20070720064410/http://atrey.karlin.mff.cuni.cz/~simecek/skola/models/
http://web.archive.org/web/20070720064410/http://atrey.karlin.mff.cuni.cz/~simecek/skola/models/
https://github.com/taboege/simecek-tools

5 / 8

Story 3: Dying languages

http://web.archive.org/web/20070720064410/http:

//atrey.karlin.mff.cuni.cz/~simecek/skola/models/

▸ Data meanwhile deleted from institute website.
▸ GNU Pascal compiler for programs hard to obtain.

▸ Even active programming language communities only care about
reported problems which surface when code is actively used.

▸ Hardly documented compiler-specific, binary floating point data format.
▸ Reimplementation: https://github.com/taboege/simecek-tools.

http://web.archive.org/web/20070720064410/http://atrey.karlin.mff.cuni.cz/~simecek/skola/models/
http://web.archive.org/web/20070720064410/http://atrey.karlin.mff.cuni.cz/~simecek/skola/models/
https://github.com/taboege/simecek-tools

5 / 8

Story 3: Dying languages

http://web.archive.org/web/20070720064410/http:

//atrey.karlin.mff.cuni.cz/~simecek/skola/models/

▸ Data meanwhile deleted from institute website.
▸ GNU Pascal compiler for programs hard to obtain.

▸ Even active programming language communities only care about
reported problems which surface when code is actively used.

▸ Hardly documented compiler-specific, binary floating point data format.

▸ Reimplementation: https://github.com/taboege/simecek-tools.

http://web.archive.org/web/20070720064410/http://atrey.karlin.mff.cuni.cz/~simecek/skola/models/
http://web.archive.org/web/20070720064410/http://atrey.karlin.mff.cuni.cz/~simecek/skola/models/
https://github.com/taboege/simecek-tools

5 / 8

Story 3: Dying languages

http://web.archive.org/web/20070720064410/http:

//atrey.karlin.mff.cuni.cz/~simecek/skola/models/

▸ Data meanwhile deleted from institute website.
▸ GNU Pascal compiler for programs hard to obtain.

▸ Even active programming language communities only care about
reported problems which surface when code is actively used.

▸ Hardly documented compiler-specific, binary floating point data format.
▸ Reimplementation: https://github.com/taboege/simecek-tools.

http://web.archive.org/web/20070720064410/http://atrey.karlin.mff.cuni.cz/~simecek/skola/models/
http://web.archive.org/web/20070720064410/http://atrey.karlin.mff.cuni.cz/~simecek/skola/models/
https://github.com/taboege/simecek-tools

6 / 8

Story 4: Platform differences

https://github.com/CInet/CInet-Alien-MiniSAT-All

▸ src/component_types/base_packed_component.h:215:29: warning: non-static

data member initializers only available with -std=c++11 or -std=gnu++11

▸ Linking nbc_minisat_all_static

ld: unknown option: --static

▸ Convoluted hierarchy of build systems.
▸ Static linking is different between GNU’s and MacOS’s ld.

▸ Solution: Require gcc . . . ?

https://github.com/CInet/CInet-Alien-MiniSAT-All

6 / 8

Story 4: Platform differences

https://github.com/CInet/CInet-Alien-MiniSAT-All

▸ src/component_types/base_packed_component.h:215:29: warning: non-static

data member initializers only available with -std=c++11 or -std=gnu++11

▸ Linking nbc_minisat_all_static

ld: unknown option: --static

▸ Convoluted hierarchy of build systems.
▸ Static linking is different between GNU’s and MacOS’s ld.

▸ Solution: Require gcc . . . ?

https://github.com/CInet/CInet-Alien-MiniSAT-All

6 / 8

Story 4: Platform differences

https://github.com/CInet/CInet-Alien-MiniSAT-All

▸ src/component_types/base_packed_component.h:215:29: warning: non-static

data member initializers only available with -std=c++11 or -std=gnu++11

▸ Linking nbc_minisat_all_static

ld: unknown option: --static

▸ Convoluted hierarchy of build systems.
▸ Static linking is different between GNU’s and MacOS’s ld.

▸ Solution: Require gcc . . . ?

https://github.com/CInet/CInet-Alien-MiniSAT-All

6 / 8

Story 4: Platform differences

https://github.com/CInet/CInet-Alien-MiniSAT-All

▸ src/component_types/base_packed_component.h:215:29: warning: non-static

data member initializers only available with -std=c++11 or -std=gnu++11

▸ Linking nbc_minisat_all_static

ld: unknown option: --static

▸ Convoluted hierarchy of build systems.
▸ Static linking is different between GNU’s and MacOS’s ld.
▸ Solution: Require gcc . . . ?

https://github.com/CInet/CInet-Alien-MiniSAT-All

7 / 8

What can we do?

▸ Ship static binaries of external dependencies using reproducible builds:

https://reproducible-builds.org

▸ When preparing data for publication, re-run all computations in a clean
(Docker) container and document or even automate setup steps.

▸ Automate the entire computation and arrange for regular test runs,
a sort of “MathRepo health check”. (Keyword: continuous integration.)

▸ Use e.g. Julia’s Manifest.toml to track exact dependency versions.

https://pkgdocs.julialang.org/v1/creating-packages/

[[deps.AlgebraicSolving]]

deps = ["LinearAlgebra", "Markdown", "Nemo", "Test", "msolve_jll"]

git-tree-sha1 = "0697dc8e50db21519459c729b2b38b99a65cee12"

uuid = "66b61cbe-0446-4d5d-9090-1ff510639f9d"

version = "0.2.2"

https://reproducible-builds.org
https://pkgdocs.julialang.org/v1/creating-packages/

7 / 8

What can we do?

▸ Ship static binaries of external dependencies using reproducible builds:

https://reproducible-builds.org

▸ When preparing data for publication, re-run all computations in a clean
(Docker) container and document or even automate setup steps.

▸ Automate the entire computation and arrange for regular test runs,
a sort of “MathRepo health check”. (Keyword: continuous integration.)

▸ Use e.g. Julia’s Manifest.toml to track exact dependency versions.

https://pkgdocs.julialang.org/v1/creating-packages/

[[deps.AlgebraicSolving]]

deps = ["LinearAlgebra", "Markdown", "Nemo", "Test", "msolve_jll"]

git-tree-sha1 = "0697dc8e50db21519459c729b2b38b99a65cee12"

uuid = "66b61cbe-0446-4d5d-9090-1ff510639f9d"

version = "0.2.2"

https://reproducible-builds.org
https://pkgdocs.julialang.org/v1/creating-packages/

7 / 8

What can we do?

▸ Ship static binaries of external dependencies using reproducible builds:

https://reproducible-builds.org

▸ When preparing data for publication, re-run all computations in a clean
(Docker) container and document or even automate setup steps.

▸ Automate the entire computation and arrange for regular test runs,
a sort of “MathRepo health check”. (Keyword: continuous integration.)

▸ Use e.g. Julia’s Manifest.toml to track exact dependency versions.

https://pkgdocs.julialang.org/v1/creating-packages/

[[deps.AlgebraicSolving]]

deps = ["LinearAlgebra", "Markdown", "Nemo", "Test", "msolve_jll"]

git-tree-sha1 = "0697dc8e50db21519459c729b2b38b99a65cee12"

uuid = "66b61cbe-0446-4d5d-9090-1ff510639f9d"

version = "0.2.2"

https://reproducible-builds.org
https://pkgdocs.julialang.org/v1/creating-packages/

7 / 8

What can we do?

▸ Ship static binaries of external dependencies using reproducible builds:

https://reproducible-builds.org

▸ When preparing data for publication, re-run all computations in a clean
(Docker) container and document or even automate setup steps.

▸ Automate the entire computation and arrange for regular test runs,
a sort of “MathRepo health check”. (Keyword: continuous integration.)

▸ Use e.g. Julia’s Manifest.toml to track exact dependency versions.

https://pkgdocs.julialang.org/v1/creating-packages/

[[deps.AlgebraicSolving]]

deps = ["LinearAlgebra", "Markdown", "Nemo", "Test", "msolve_jll"]

git-tree-sha1 = "0697dc8e50db21519459c729b2b38b99a65cee12"

uuid = "66b61cbe-0446-4d5d-9090-1ff510639f9d"

version = "0.2.2"

https://reproducible-builds.org
https://pkgdocs.julialang.org/v1/creating-packages/

8 / 8

Hands on!

Online worksheet: https://github.com/taboege/rddm23

▸ Likelihood degenerations (Example 4.1):
What is the ML degree of the Pappus matroid?

▸ No eleventh conditional Ingleton inequality (Section 3.1):
Find the 6 814 shortest masks of the Ingleton expression.

▸ Package the SAT solver Kissat (with proof support) for Julia:
see Creating Packages and Artifacts.

▸ Reproduce the research data in https://github.com/taboege/rddm23 on a
freshly installed OS (container) of your choice. Automate this procedure.

▸ Count loopless matroids using the axiomatization in arXiv:2303.06668.

https://github.com/taboege/rddm23
https://mathrepo.mis.mpg.de/LikelihoodDegenerations/ML_degrees_of_matroids.html
https://mathrepo.mis.mpg.de/ConditionalIngleton/index.html
https://github.com/arminbiere/kissat
https://pkgdocs.julialang.org/v1/creating-packages/
https://pkgdocs.julialang.org/v1/artifacts/
https://github.com/taboege/rddm23
https://arxiv.org/abs/2303.06668

