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Matroids

▶ Matroids are combinatorial structures
which model “special position” relations
in geometry.

▶ For example the matroid of a set of
points in the projective plane records
which triples of points lie on a line.

▶ Non-realizability of matroids captures the
(non-obvious) laws of projective geometry.
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Laws of geometry
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Entropy

Let X be a random variable taking finitely many values {1, . . . , d} with positive
probabilities. Its Shannon entropy is

H(X ) :=
d∑

i=1

p(X = i) log 1/p(X = i).

▶ H is continuous on ∆(d) and analytic on the interior.

▶ A random vector X ∈ ∆(d1, . . . , dn) is a random variable in ∆(
∏n

i=1 di ),
so the definition of H extends to vectors.

▶ For a random vector X = (X1, . . . ,Xn) we have 2n marginals
and we collect their entropies in an entropy profile hX : 2[n] → R.
▶ For example (X ,Y ) has entropy profile (0,H(X ),H(Y ),H(X ,Y )) ∈ R4.
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Entropy as information
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Figure: Entropy of a binary random variable X as a function of p = p(X = heads).
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Independence: geometry ↔ information theory

Information-theoretical “special position” properties of discrete random variables can
be formulated in terms of linear functionals on the entropy profile hX :

Rank condition Matroid concept Information theory concept

h(xi ) = 0 loop constant random variable

h(xi ,X[n]\i ) = h(xi ) + h(X[n]\i ) coloop max. private information

h(xi ,XK ) = h(XK ) closure operator functional dependence

h(XK∪L) = h(XK ) + h(XL) independent set total independence

h(xi , xj | XK ) = h(xi | XK ) + h(xj | XK ) modular pair conditional independence

Even though entropy is a transcendental function, many of these conditions are
polynomial in the probabilities → algebraic statistics.
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The entropy region and information inequalities

Let H∗
n ⊆ R2n consist of all hX where X is an n-variate discrete random vector. H∗

n is
the image of

⋃∞
d1=1 · · ·

⋃∞
dn=1∆(d1, . . . , dn) under the transcendental map X 7→ hX .

▶ H∗
n is a finite-dimensional space which captures special position information for

all discrete random vectors of a fixed length (but unbounded state spaces).

▶ Applications in cryptography, coding theory, engineering want to optimize
linear functions over H∗

n.

Theorem ([Mat07])

H∗
n is a convex cone of dimension 2n − 1. Furthermore relint(H∗

n) ⊆ H∗
n.

▶ Elements of the dual cone (linear information inequalities) can give bounds for
optimization problems.
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Ingleton inequality

Let A,B,C ,D be subspaces in a finite-dimensional vector space.
Then the Ingleton inequality holds for h = dim:

I(A,B | C ,D) :=h(A,C ) + h(B,C ) + h(A,D) + h(B,D) + h(C ,D)−
h(A,B)− h(C )− h(D)− h(A,C ,D)− h(B,C ,D) ≥ 0.

The Ingleton inequality fails in general for h = hX but it has been discovered that
certain special position assumptions make it true even in the entropic setting, e.g.,

▶ If C ⊥⊥ D then I(A,B | C ,D) ≥ 0.

▶ If A ⊥⊥ C | D and A ⊥⊥ D | C then I(A,B | C ,D) ≥ 0.

▶ . . .

These are conditional linear information inequalities and they can tell apart honest
boundary parts of H∗

n from fake boundary parts on H∗
n.
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Conditional Ingleton inequalities

Theorem ([KR13] & [Stu21] & [Boe23])

Up to symmetry there are precisely ten minimal sets of conditional independence
assumptions on four random variables which ensure I ≥ 0.

Check out https://mathrepo.mis.mpg.de/ConditionalIngleton/ for non-linear

algebra and numerical optimization techniques used in part of the proof.

Corollary

On four discrete random variables there are precisely 18 478 realizable conditional
independence structures. (Combinatorial laws of information theory)

Problem

Which of these laws holds on H∗
N? (Some do, some don’t . . . )

https://mathrepo.mis.mpg.de/ConditionalIngleton/
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Challenges

Problem

Find/sample positive points from conditional independence varieties.

Problem

Let V be a Z-defined variety. The distribution on Fn
q which is supported and uniform

on V (Fq) has an entropy profile. How to compute it as q = pe with p, e → ∞?

Problem

Find a description of the boundary of H∗
3.

Thank you!Thank you!
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[Mat06] Frantisek Matús. “Piecewise linear conditional information inequality”. In: IEEE Trans. Inf.
Theory 52.1 (2006), pp. 236–238. issn: 0018-9448. doi: 10.1109/TIT.2005.860438.

[Mat07] Frantǐsek Matúš. “Two constructions on limits of entropy functions.”. In: IEEE Trans. Inf.
Theory 53.1 (2007), pp. 320–330. issn: 0018-9448. doi: 10.1109/TIT.2006.887090.
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