Tobias Boege, Kaie Kubjas, Pratik Misra, Liam Solus

[arXiv:2404.04024](https://arxiv.org/abs/2404.04024)

Department of Mathematics KTH Royal Institute of Technology, Sweden

> Applied CATS seminar KTH Stockholm, 09 April 2024

 \triangleright A linear structural equation model defines random variables X recursively via a directed acyclic graph $G = (V, E)$ and Gaussian noise:

$$
X_j = \sum_{i \in \mathrm{pa}(j)} \lambda_{ij} X_i + \varepsilon_j, \quad \varepsilon_j \sim \mathcal{N}(0, \omega_j).
$$

 \triangleright A linear structural equation model defines random variables X recursively via a directed acyclic graph $G = (V, E)$ and Gaussian noise:

$$
X_j = \sum_{i \in \mathrm{pa}(j)} \lambda_{ij} X_i + \varepsilon_j, \quad \varepsilon_j \sim \mathcal{N}(0, \omega_j).
$$

 \triangleright A linear structural equation model defines random variables X recursively via a directed acyclic graph $G = (V, E)$ and Gaussian noise:

$$
X_j = \sum_{i \in \mathrm{pa}(j)} \lambda_{ij} X_i + \varepsilon_j, \quad \varepsilon_j \sim \mathcal{N}(0, \omega_j).
$$

- \triangleright Parents of node *j* are regarded as direct causes of *j*.
- \blacktriangleright The vector X is again Gaussian with mean zero. Since G is acyclic, we can solve for the covariance matrix Σ :

$$
\Sigma = (I - \Lambda)^{-T} \Omega (I - \Lambda)^{-1}, \quad \text{with } \Lambda \in \mathbb{R}^E \text{ and } \Omega = \text{diag}(\omega).
$$

 \triangleright A linear structural equation model defines random variables X recursively via a directed acyclic graph $G = (V, E)$ and Gaussian noise:

$$
X_j = \sum_{i \in \mathrm{pa}(j)} \lambda_{ij} X_i + \varepsilon_j, \quad \varepsilon_j \sim \mathcal{N}(0, \omega_j).
$$

- \triangleright Parents of node *i* are regarded as direct causes of *i*.
- \blacktriangleright The vector X is again Gaussian with mean zero. Since G is acyclic, we can solve for the covariance matrix Σ :

$$
\Sigma = (I - \Lambda)^{-T} \Omega (I - \Lambda)^{-1}, \text{ with } \Lambda \in \mathbb{R}^{E} \text{ and } \Omega = \text{diag}(\omega).
$$

► All such matrices form the model $\mathcal{M}(G) \subseteq \mathrm{PD}_V$.

 $\blacktriangleright \mathcal{M}(G)$ is a smooth submanifold of PD_V and its Zariski closure is irreducible.

- \blacktriangleright $\mathcal{M}(G)$ is a smooth submanifold of PD_V and its Zariski closure is irreducible.
- \blacktriangleright The parameters (ω, Λ) are rationally identifiable.

- \blacktriangleright $\mathcal{M}(G)$ is a smooth submanifold of PD_V and its Zariski closure is irreducible.
- \blacktriangleright The parameters (ω, Λ) are rationally identifiable.
- \triangleright The model is equivalently given by the Markov properties of the DAG, e.g.,

 $\mathcal{M}(G) = \{ \Sigma \in \mathrm{PD}_V : i \perp \!\!\! \perp j \mid \mathrm{pa}(j) \text{ whenever } ij \notin E \}.$

- \blacktriangleright $\mathcal{M}(G)$ is a smooth submanifold of PD_V and its Zariski closure is irreducible.
- \blacktriangleright The parameters (ω, Λ) are rationally identifiable.
- \triangleright The model is equivalently given by the Markov properties of the DAG, e.g.,

 $\mathcal{M}(G) = \{ \Sigma \in \mathrm{PD}_V : i \perp \!\!\! \perp i \mid \mathrm{pa}(i) \text{ whenever } ij \notin E \}.$

Almost all distributions in $M(G)$ are faithful to G, i.e., do not satisfy more CI statements than the global Markov property.

- \blacktriangleright $\mathcal{M}(G)$ is a smooth submanifold of PD_V and its Zariski closure is irreducible.
- \blacktriangleright The parameters (ω, Λ) are rationally identifiable.
- \triangleright The model is equivalently given by the Markov properties of the DAG, e.g.,

 $\mathcal{M}(G) = \{ \Sigma \in \mathrm{PD}_V : i \perp \!\!\! \perp i \mid \mathrm{pa}(i) \text{ whenever } ij \notin E \}.$

- Almost all distributions in $M(G)$ are faithful to G, i.e., do not satisfy more CI statements than the global Markov property.
- \blacktriangleright Model equivalence $\mathcal{M}(G) = \mathcal{M}(H)$ is combinatorially characterized: if and only if G and H have the same skeleton and v-structures.

- \blacktriangleright $\mathcal{M}(G)$ is a smooth submanifold of PD_V and its Zariski closure is irreducible.
- \blacktriangleright The parameters (ω, Λ) are rationally identifiable.
- \triangleright The model is equivalently given by the Markov properties of the DAG, e.g.,

 $\mathcal{M}(G) = \{ \Sigma \in \mathrm{PD}_V : i \perp \!\!\! \perp i \mid \mathrm{pa}(i) \text{ whenever } ij \notin E \}.$

- Almost all distributions in $M(G)$ are faithful to G, i.e., do not satisfy more CI statements than the global Markov property.
- \blacktriangleright Model equivalence $\mathcal{M}(G) = \mathcal{M}(H)$ is combinatorially characterized: if and only if G and H have the same skeleton and v-structures.
	- \blacktriangleright Markov equivalence $=$ ambiguity about the direction of causality.

 \triangleright In a colored Gaussian DAG model, the vertices and edges of G are partitioned into color classes via a coloring function $c: V \sqcup E \rightarrow C_V \sqcup C_E$.

- \blacktriangleright In a colored Gaussian DAG model, the vertices and edges of G are partitioned into color classes via a coloring function $c: V \sqcup E \rightarrow C_V \sqcup C_F$.
- \blacktriangleright The parametrization Σ $=(I \Lambda)^{-\top} \Omega (I \Lambda)^{-1}$ stays the same but we reduce the parameter space: $\omega_i = \omega_i$ if $c(i) = c(j)$ and $\lambda_{ii} = \lambda_{ki}$ if $c(ij) = c(kl)$.

 \triangleright In a colored Gaussian DAG model, the vertices and edges of G are partitioned into color classes via a coloring function $c: V \sqcup E \rightarrow C_V \sqcup C_E$.

• The parametrization
$$
\Sigma = (I - \Lambda)^{-T} \Omega (I - \Lambda)^{-1}
$$
 stays the same but we reduce the parameter space: $\omega_i = \omega_j$ if $c(i) = c(j)$ and $\lambda_{ij} = \lambda_{kl}$ if $c(i) = c(kl)$.

 \triangleright This restricts the parameters to a \geq linear subspace \leq

 \blacktriangleright In a colored Gaussian DAG model, the vertices and edges of G are partitioned into color classes via a coloring function $c: V \sqcup E \rightarrow C_V \sqcup C_F$.

• The parametrization
$$
\Sigma = (I - \Lambda)^{-T} \Omega (I - \Lambda)^{-1}
$$
 stays the same but we reduce the parameter space: $\omega_i = \omega_j$ if $c(i) = c(j)$ and $\lambda_{ij} = \lambda_{kl}$ if $c(i) = c(kl)$.

- \triangleright This restricts the parameters to a \geq linear subspace \leq
- \triangleright Vertex-only colorings correspond to partial homoscedasticity [\[WD23\]](#page-47-0).

 \triangleright Coloring reduces Markov-equivalence classes which eases causal discovery.

 \triangleright Coloring reduces Markov-equivalence classes which eases causal discovery.

 \triangleright Coloring reduces Markov-equivalence classes which eases causal discovery.

 \blacktriangleright The vanishing ideal in both cases is

$$
I_{13|2}=\langle \sigma_{13}\sigma_{22}-\sigma_{12}\sigma_{23} \rangle
$$

 \triangleright Coloring reduces Markov-equivalence classes which eases causal discovery.

$$
I_{13|2}=\langle \sigma_{13}\sigma_{22}-\sigma_{12}\sigma_{23} \rangle
$$

 \blacktriangleright Generator is invariant under $1 \leftrightarrow 3$.

 \triangleright Coloring reduces Markov-equivalence classes which eases causal discovery.

 \blacktriangleright The vanishing ideal in both cases is

$$
\mathit{I}_{13|2}=\left\langle\ \sigma_{13}\sigma_{22}-\sigma_{12}\sigma_{23}\ \right\rangle
$$

 \blacktriangleright Generator is invariant under $1 \leftrightarrow 3$.

The first vanishing ideal is:

$$
\mathit{I}_{13|2}+\big\langle\;\sigma_{12}\sigma_{22}-\sigma_{11}\sigma_{23},\sigma^2_{12}-\sigma_{11}\sigma_{13}\;\big\rangle
$$

 \triangleright Coloring reduces Markov-equivalence classes which eases causal discovery.

 \blacktriangleright The vanishing ideal in both cases is

$$
\textbf{1}_{13|2}=\left\langle\text{ }\sigma_{13}\sigma_{22}-\sigma_{12}\sigma_{23}\text{ }\right\rangle
$$

 \blacktriangleright Generator is invariant under $1 \leftrightarrow 3$.

The first vanishing ideal is:

$$
\mathit{I}_{13|2}+\big\langle\;\sigma_{12}\sigma_{22}-\sigma_{11}\sigma_{23},\sigma^2_{12}-\sigma_{11}\sigma_{13}\;\big\rangle
$$

 \blacktriangleright Not invariant anymore.

 \blacktriangleright It follows from the recursive factorization and some linear algebra that

$$
\omega_j = \text{Var}(X_i \mid X_{\text{pa}(i)}) = \frac{|\Sigma_{j \cup \text{pa}(j)}|}{|\Sigma_{\text{pa}(j)}|}
$$

 \blacktriangleright It follows from the recursive factorization and some linear algebra that

$$
\omega_j = \mathrm{Var}(X_i \mid X_{\mathrm{pa}(i)}) = \frac{|\Sigma_{j \cup \mathrm{pa}(j)}|}{|\Sigma_{\mathrm{pa}(j)}|}, \quad \lambda_{ij} = \frac{\mathrm{Cov}(X_i, X_j \mid X_{\mathrm{pa}(j) \setminus i})}{\mathrm{Var}(X_i \mid X_{\mathrm{pa}(j) \setminus i})} = \frac{|\Sigma_{ij| \mathrm{pa}(j) \setminus i}|}{|\Sigma_{\mathrm{pa}(j)}|}.
$$

 \blacktriangleright It follows from the recursive factorization and some linear algebra that

$$
\omega_j = \text{Var}(X_i \mid X_{\text{pa}(i)}) = \frac{|\Sigma_{j \cup \text{pa}(j)}|}{|\Sigma_{\text{pa}(j)}|}, \quad \lambda_{ij} = \frac{\text{Cov}(X_i, X_j \mid X_{\text{pa}(j) \setminus i})}{\text{Var}(X_i \mid X_{\text{pa}(j) \setminus i})} = \frac{|\Sigma_{ij| \text{pa}(j) \setminus i}|}{|\Sigma_{\text{pa}(j)}|}.
$$

 \blacktriangleright Study the rational functions

$$
\omega_{j|A}(\Sigma)=\frac{|\Sigma_{j\cup A}|}{|\Sigma_A|},\quad \lambda_{ij|A}(\Sigma)=\frac{|\Sigma_{ij|A\setminus i}|}{|\Sigma_A|}.
$$

 \blacktriangleright It follows from the recursive factorization and some linear algebra that

$$
\omega_j = \mathrm{Var}(X_i \mid X_{\mathrm{pa}(i)}) = \frac{|\Sigma_{j \cup \mathrm{pa}(j)}|}{|\Sigma_{\mathrm{pa}(j)}|}, \quad \lambda_{ij} = \frac{\mathrm{Cov}(X_i, X_j \mid X_{\mathrm{pa}(j) \setminus i})}{\mathrm{Var}(X_i \mid X_{\mathrm{pa}(j) \setminus i})} = \frac{|\Sigma_{ij| \mathrm{pa}(j) \setminus i}|}{|\Sigma_{\mathrm{pa}(j)}|}.
$$

 \blacktriangleright Study the rational functions

$$
\omega_{j|A}(\Sigma)=\frac{|\Sigma_{j\cup A}|}{|\Sigma_A|}, \quad \lambda_{ij|A}(\Sigma)=\frac{|\Sigma_{ij|A\setminus i}|}{|\Sigma_A|}.
$$

 \triangleright A set A is identifying for a vertex *i* resp. edge *ij* if

$$
\omega_j = \omega_{j|A}(\Sigma) \text{ resp. } \lambda_{ij} = \lambda_{ij|A}(\Sigma)
$$

for all $\Sigma \in \mathcal{M}(G)$.

Theorem

Let $G = (V, E)$ be a DAG. Then:

 $\triangleright \omega_j = \omega_{j|A}(\Sigma)$ for every $\Sigma \in \mathcal{M}(G)$ if and only if $\text{pa}(j) \subseteq A \subseteq V \setminus \overline{\text{de}}(j)$. [\[WD23\]](#page-47-0)

Theorem

- Let $G = (V, E)$ be a DAG. Then:
	- $\triangleright \omega_j = \omega_{j|A}(\Sigma)$ for every $\Sigma \in \mathcal{M}(G)$ if and only if $\text{pa}(j) \subseteq A \subseteq V \setminus \overline{\text{de}}(j)$. [\[WD23\]](#page-47-0)
	- \triangleright If ij \notin E, then $\lambda_{ij} = 0 = \lambda_{ii|A}(\Sigma)$ for every $\Sigma \in \mathcal{M}(G)$ if and only if A \setminus i d-separates i and *j* in G. [Folklore]

Theorem

Let $G = (V, E)$ be a DAG. Then:

 $\triangleright \omega_i = \omega_{i|A}(\Sigma)$ for every $\Sigma \in \mathcal{M}(G)$ if and only if $\text{pa}(j) \subseteq A \subseteq V \setminus \overline{\text{de}}(j)$. [\[WD23\]](#page-47-0)

- \triangleright If ij \notin E, then $\lambda_{ij} = 0 = \lambda_{ii|A}(\Sigma)$ for every $\Sigma \in \mathcal{M}(G)$ if and only if A \setminus i d-separates i and *i* in G. [Folklore]
- \blacktriangleright If ij ∈ E, then $\lambda_{ij} = \lambda_{ij|A}(\Sigma)$ for every $\Sigma \in \mathcal{M}(G)$ if and only if $i \in A \subseteq V \setminus \overline{\text{de}}(j)$ and A \backslash i d-separates i and i in the graph G_{ii} which arises from G by deleting the edge ij and the vertices $de(i)$.

Theorem

Let $G = (V, E)$ be a DAG. Then:

 $\triangleright \omega_i = \omega_{iA}(\Sigma)$ for every $\Sigma \in \mathcal{M}(G)$ if and only if $\text{pa}(i) \subseteq A \subseteq V \setminus \text{de}(i)$. [\[WD23\]](#page-47-0)

 \triangleright If ij \notin E, then $\lambda_{ij} = 0 = \lambda_{ii|A}(\Sigma)$ for every $\Sigma \in \mathcal{M}(G)$ if and only if A \setminus i d-separates i and *i* in G. [Folklore]

 \triangleright If ij ∈ E, then $\lambda_{ii} = \lambda_{ii|A}(\Sigma)$ for every $\Sigma \in \mathcal{M}(G)$ if and only if $i \in A \subseteq V \setminus \overline{\text{de}}(j)$ and A \backslash i d-separates i and i in the graph G_{ii} which arises from G by deleting the edge ij and the vertices $de(i)$.

 \blacktriangleright The polynomials $\text{ver}(i|A, j|B) = |\Sigma_A||\Sigma_B|(\omega_{i|A} - \omega_{i|B})$ resp. $\text{ecr}(ij|A, k||B) = |\Sigma_A||\Sigma_B|(\lambda_{ij|A} - \lambda_{k||B})$ vanish on the model $\mathcal{M}(G, c)$ whenever $c(i) = c(i)$ resp. $c(i) = c(k)$ and A and B are identifying.

Model geometry

Theorem

For every colored DAG (G, c) the model $\mathcal{M}(G, c)$ has irreducible Zariski closure and is a smooth submanifold of PD_V . It is diffeomorphic to an open ball of dimension $vc + ec$ (the number of vertex- and edge-color classes).

Model geometry

Theorem

For every colored DAG (G, c) the model $\mathcal{M}(G, c)$ has irreducible Zariski closure and is a smooth submanifold of PD_V . It is diffeomorphic to an open ball of dimension $vc + ec$ (the number of vertex- and edge-color classes).

Theorem

The vanishing ideal $P_{G,c}$ of $\mathcal{M}(G,c)$ is $(I_G + I_c)$: S_G where:

- $I_G = \langle |\Sigma_{ij|pa(j)}| : ij \notin E \rangle$ is the conditional independence ideal of G,
- $I_c = \langle \text{vcr}(i|pa(i), j|pa(j)) : c(i) = c(j) \rangle + \langle \text{ecr}(ij|pa(j), kl|pa(l)) : c(ij) = c(kl) \rangle$ is the coloring ideal of G,
- $S_G = \{\prod_{j\in V} |\Sigma_{{\rm pa}(j)}|^{k_j}: k_j\in\mathbb{N}\}$ is the monoid of parental principal minors.

Model geometry

Theorem

For every colored DAG (G, c) the model $\mathcal{M}(G, c)$ has irreducible Zariski closure and is a smooth submanifold of PD_V . It is diffeomorphic to an open ball of dimension $vc + ec$ (the number of vertex- and edge-color classes).

Theorem

The vanishing ideal $P_{G,c}$ of $\mathcal{M}(G,c)$ is $(I_G + I_c)$: S_G where:

- $I_G = \langle |\Sigma_{ij|pa(j)}| : ij \notin E \rangle$ is the conditional independence ideal of G,
- $I_c = \langle \text{vcr}(i|pa(i), j|pa(j)) : c(i) = c(j) \rangle + \langle \text{ecr}(ij|pa(j), kl|pa(l)) : c(ij) = c(kl) \rangle$ is the coloring ideal of G,
- $S_G = \{\prod_{j\in V} |\Sigma_{{\rm pa}(j)}|^{k_j}: k_j\in\mathbb{N}\}$ is the monoid of parental principal minors.

Resolves the colored generalization of a conjecture of Sullivant; see also [\[RP14\]](#page-47-1).

Lemma

Let R, R' be rings, $S \subseteq R$ multiplicatively closed, and:

 \blacktriangleright maps $\phi: R \to R'$ and $\psi: R' \to S^{-1}R$ with $\psi \circ \phi = \mathrm{id}_R$,

 \triangleright for a prime ideal $I' = \langle f_1, \ldots, f_k \rangle$, write $\psi(f_i) = \frac{\varepsilon_i}{h_i}$ and set $J = \langle g_i \rangle$. If $I\coloneqq \phi^{-1}(I')\in \operatorname{Spec}\nolimits({S^{-1}R/J}),$ then $I=J:S.$

Lemma

Let R, R' be rings, $S \subseteq R$ multiplicatively closed, and:

 \blacktriangleright maps $\phi: R \to R'$ and $\psi: R' \to S^{-1}R$ with $\psi \circ \phi = \mathrm{id}_R$,

 \triangleright for a prime ideal $I' = \langle f_1, \ldots, f_k \rangle$, write $\psi(f_i) = \frac{\varepsilon_i}{h_i}$ and set $J = \langle g_i \rangle$. If $I\coloneqq \phi^{-1}(I')\in \operatorname{Spec}\nolimits({S^{-1}R/J}),$ then $I=J:S.$

For example, ϕ = parametrization of $\mathcal{M}(K_n)$, ψ = parameter identification map and $I' =$ linear equations on parameters from missing edges and color classes.

Lemma

Let R, R' be rings, $S \subseteq R$ multiplicatively closed, and:

 \blacktriangleright maps $\phi: R \to R'$ and $\psi: R' \to S^{-1}R$ with $\psi \circ \phi = \mathrm{id}_R$,

► for a prime ideal
$$
I' = \langle f_1, \ldots, f_k \rangle
$$
, write $\psi(f_i) = \frac{\varepsilon_i}{h_i}$ and set $J = \langle g_i \rangle$. If $I := \phi^{-1}(I') \in \text{Spec}(S^{-1}R/J)$, then $I = J : S$.

- For example, ϕ = parametrization of $\mathcal{M}(K_n)$, ψ = parameter identification map and $I' =$ linear equations on parameters from missing edges and color classes.
- \triangleright The lemma computes the vanishing ideal up to a saturation of rationally identifiable models with additional equation constraints.

Lemma

Let R, R' be rings, $S \subseteq R$ multiplicatively closed, and:

 \blacktriangleright maps $\phi: R \to R'$ and $\psi: R' \to S^{-1}R$ with $\psi \circ \phi = \mathrm{id}_R$,

► for a prime ideal
$$
I' = \langle f_1, \ldots, f_k \rangle
$$
, write $\psi(f_i) = \frac{\varepsilon_i}{h_i}$ and set $J = \langle g_i \rangle$. If $I := \phi^{-1}(I') \in \text{Spec}(S^{-1}R/J)$, then $I = J : S$.

- For example, ϕ = parametrization of $\mathcal{M}(K_n)$, ψ = parameter identification map and $I' =$ linear equations on parameters from missing edges and color classes.
- \triangleright The lemma computes the vanishing ideal up to a saturation of rationally identifiable models with additional equation constraints.
- \blacktriangleright Knowing a parametrization and generators for the vanishing ideal up to saturation is sufficient in practice for model distinguishability.

Lemma

Let R, R' be rings, $S \subseteq R$ multiplicatively closed, and:

 \blacktriangleright maps $\phi: R \to R'$ and $\psi: R' \to S^{-1}R$ with $\psi \circ \phi = \mathrm{id}_R$,

► for a prime ideal
$$
I' = \langle f_1, \ldots, f_k \rangle
$$
, write $\psi(f_i) = \frac{\varepsilon_i}{h_i}$ and set $J = \langle g_i \rangle$. If $I := \phi^{-1}(I') \in \text{Spec}(S^{-1}R/J)$, then $I = J : S$.

- For example, ϕ = parametrization of $\mathcal{M}(K_n)$, ψ = parameter identification map and $I' =$ linear equations on parameters from missing edges and color classes.
- \triangleright The lemma computes the vanishing ideal up to a saturation of rationally identifiable models with additional equation constraints.
- \blacktriangleright Knowing a parametrization and generators for the vanishing ideal up to saturation is sufficient in practice for model distinguishability.
- \triangleright Conceivable to extend to non-linear equations and inequalities.

Fix a colored DAG (G, c) and $\Sigma \in \mathcal{M}(G, c)$.

 \triangleright Σ is faithful to G if it satisfies no more CI statements than the d-separations in G.

Fix a colored DAG (G, c) and $\Sigma \in \mathcal{M}(G, c)$.

- \triangleright Σ is faithful to G if it satisfies no more CI statements than the d-separations in G.
- \blacktriangleright Σ is faithful to c if it satisfies no more vcr or ecr relations than those from c.

Fix a colored DAG (G, c) and $\Sigma \in \mathcal{M}(G, c)$.

- \triangleright \triangleright \triangleright is faithful to G if it satisfies no more CI statements than the d-separations in G.
- \triangleright \triangleright is faithful to c if it satisfies no more vcr or ecr relations than those from c.

Theorem([\[WD23;](#page-47-0) [STD10\]](#page-47-2))

Fix a colored DAG (G, c) and $\Sigma \in \mathcal{M}(G, c)$.

- \triangleright \triangleright \triangleright is faithful to G if it satisfies no more CI statements than the d-separations in G.
- \triangleright \triangleright is faithful to c if it satisfies no more vcr or ecr relations than those from c.

Theorem([\[WD23;](#page-47-0) [STD10\]](#page-47-2))

- \triangleright Generic $\Sigma \in \mathcal{M}(G, c)$ is faithful to c.
- \triangleright Generic $\Sigma \in \mathcal{M}(G, c)$ is faithful to G if c is a vertex-coloring or an edge-coloring.

Fix a colored DAG (G, c) and $\Sigma \in \mathcal{M}(G, c)$.

- \blacktriangleright Σ is faithful to G if it satisfies no more CI statements than the d-separations in G.
- \blacktriangleright Σ is faithful to c if it satisfies no more vcr or ecr relations than those from c.

Theorem([\[WD23;](#page-47-0) [STD10\]](#page-47-2))

• Generic
$$
\Sigma \in \mathcal{M}(G, c)
$$
 is faithful to c.

 \triangleright Generic $\Sigma \in \mathcal{M}(G, c)$ is faithful to G if c is a vertex-coloring or an edge-coloring.

 \blacktriangleright The example on the right colors vertices and edges. The generic matrix in the model satisfies $1 \perp 4$ | 5. No faithful distribution!

Theorem([\[WD23\]](#page-47-0))

If (G, c) and (H, c) are vertex-colored DAGs, then $\mathcal{M}(G, c) = \mathcal{M}(H, c)$ if and only if G and H are Markov-equivalent and $\text{pa}_G(j) = \text{pa}_H(j)$ for all $j \in V$ with $|c^{-1}(j)| \geq 2$.

Theorem([\[WD23\]](#page-47-0))

If (G, c) and (H, c) are vertex-colored DAGs, then $\mathcal{M}(G, c) = \mathcal{M}(H, c)$ if and only if G and H are Markov-equivalent and $\text{pa}_G(j) = \text{pa}_H(j)$ for all $j \in V$ with $|c^{-1}(j)| \geq 2$.

An edge-colored DAG (G, c) is BPEC if:

Theorem([\[WD23\]](#page-47-0))

If (G, c) and (H, c) are vertex-colored DAGs, then $\mathcal{M}(G, c) = \mathcal{M}(H, c)$ if and only if G and H are Markov-equivalent and $\text{pa}_G(j) = \text{pa}_H(j)$ for all $j \in V$ with $|c^{-1}(j)| \geq 2$.

An edge-colored DAG (G, c) is BPEC if:

 \triangleright proper: all edge color classes have size at least two,

Theorem([\[WD23\]](#page-47-0))

If (G, c) and (H, c) are vertex-colored DAGs, then $\mathcal{M}(G, c) = \mathcal{M}(H, c)$ if and only if G and H are Markov-equivalent and $\text{pa}_G(j) = \text{pa}_H(j)$ for all $j \in V$ with $|c^{-1}(j)| \geq 2$.

An edge-colored DAG (G, c) is BPEC if:

- \triangleright proper: all edge color classes have size at least two,
- \triangleright blocked: color classes partition parent sets of nodes.

Theorem([\[WD23\]](#page-47-0))

If (G, c) and (H, c) are vertex-colored DAGs, then $\mathcal{M}(G, c) = \mathcal{M}(H, c)$ if and only if G and H are Markov-equivalent and $\text{pa}_G(j) = \text{pa}_H(j)$ for all $j \in V$ with $|c^{-1}(j)| \geq 2$.

An edge-colored DAG (G, c) is BPEC if:

- \triangleright proper: all edge color classes have size at least two.
- \triangleright blocked: color classes partition parent sets of nodes.

Theorem

If (G, c) and (H, d) are two BPEC-DAGs, then $\mathcal{M}(G, c) = \mathcal{M}(H, d)$ implies $(G, c) = (H, d)$. In particular, the Markov-equivalence classes of BPEC-DAGs are singletons and the causal structure is identifiable.

References

[BKMS24] Tobias Boege, Kaie Kubjas, Pratik Misra, and Liam Solus. Colored Gaussian DAG models. [arXiv:2404.04024](https://arxiv.org/abs/2404.04024) [math.ST]. 2024. [RP14] Hajir Roozbehani and Yury Polyanskiy. Algebraic Methods of Classifying Directed Graphical Models. [arXiv:1401.5551](https://arxiv.org/abs/1401.5551) [cs.IT]. 2014. [STD10] Seth Sullivant, Kelli Talaska, and Jan Draisma. "Trek separation for Gaussian graphical models". In: Ann. Stat. 38.3 (2010), pp. 1665-1685. ISSN: 0090-5364. DOI: [10.1214/09-AOS760](https://doi.org/10.1214/09-AOS760). [WD23] Jun Wu and Mathias Drton. "Partial Homoscedasticity in Causal Discovery with Linear Models". In: IEEE Journal on Selected Areas in Information Theory (2023).