Marginal independence models

Tobias Boege¹ Sonja Petrović² Bernd Sturmfels^{3,4}

¹Aalto University ²Illinois Tech ³UC Berkeley ⁴MPI-MiS

Applied CATS Seminar, KTH Stockholm, 14 February 2023

The mantra of algebraic statistics

Statistical models are semialgebraic sets¹

The set of all distributions of two *independent* binary random variables (X, Y) is a surface in the probability simplex defined by

$$P(X = 0, Y = 0) \cdot P(X = 1, Y = 1) =$$
$$P(X = 0, Y = 1) \cdot P(X = 1, Y = 0).$$

sometimes

The mantra of algebraic statistics

Statistical models are semialgebraic sets¹

The set of all distributions of two *independent* binary random variables (X, Y) is a surface in the probability simplex defined by

 $p_{00} \cdot p_{11} = p_{01} \cdot p_{10}.$

Also known as the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^1$.

Setup

- Consider discrete random variables X_j with state space $[d_j] = \{1, \ldots, d_j\}$.
- ► A probability distribution P is identified with the d₁ ×···× d_n tensor of atomic probabilities p_{i1...in} := P(X₁ = i₁,..., X_n = i_n).
- ▶ The probability simplex is the set of all discrete distributions

$$\Delta = \Delta(d_1, d_2, \dots, d_n) = \{P \in \mathbb{R}^{d_1 \times \dots \times d_n} : P \ge 0 \text{ and } \sum P = 1\}.$$

Setup

- Consider discrete random variables X_j with state space $[d_j] = \{1, \ldots, d_j\}$.
- ► A probability distribution P is identified with the d₁ ×···× d_n tensor of atomic probabilities p_{i1...in} := P(X₁ = i₁,..., X_n = i_n).
- The probability simplex is the set of all discrete distributions

$$\Delta = \Delta(d_1, d_2, \dots, d_n) = \{P \in \mathbb{R}^{d_1 \times \dots \times d_n} : P \ge 0 \text{ and } \sum P = 1\}.$$

• A statistical model is a subset of Δ . E.g., the binary independence model is the set of all 2 × 2 matrices $P = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix}$ in $\Delta(2, 2)$ such that det P = 0.

This describes a statistical model in $\Delta(2, 2, ..., 2)$. A point in the model is a probability distribution whose outcomes are graphs on four vertices.

Marginal independence models: Definition

In this talk, a simplicial complex is a collection Σ of subsets of [n] such that:

- $\{i\} \in \Sigma$ for all $i \in [n]$,
- $\bullet \ \tau \subseteq \sigma \in \Sigma \Rightarrow \tau \in \Sigma.$

Marginal independence models: Definition

In this talk, a simplicial complex is a collection Σ of subsets of [n] such that:

- $\{i\} \in \Sigma$ for all $i \in [n]$,
- $\tau \subseteq \sigma \in \Sigma \Rightarrow \tau \in \Sigma$.

Definition

The marginal independence model \mathcal{M}_{Σ} is the set of distributions of (X_1, \ldots, X_n) in $\Delta(d_1, \ldots, d_n)$ such that X_{σ} is completely independent for all $\sigma \in \Sigma$.

 The random subgraph model is a marginal independence model where Σ is the simplicial complex of all forests in the graph. A subvector X_{σ} , $\sigma \subseteq [n]$, is *completely independent* if for all choices $i_j \in [d_j]$:

$$P(X_j = i_j : j \in \sigma) = \prod_{j \in \sigma} P(X_j = i_j).$$

That is, the marginal distribution P_{σ} of X_{σ} is a tensor of rank 1.

A subvector X_{σ} , $\sigma \subseteq [n]$, is *completely independent* if for all choices $i_j \in [d_j]$:

$$P(X_j = i_j : j \in \sigma) = \prod_{j \in \sigma} P(X_j = i_j).$$

That is, the marginal distribution P_{σ} of X_{σ} is a tensor of rank 1.

Implicitization of the above parametrization gives the equations of the Segre variety $\times_{j\in\sigma} \mathbb{P}^{d_j-1}$ in $\mathbb{P}^{\prod_{j\in\sigma} d_j - 1}$.

Hierarchical models are also derived from simplicial complexes but their parametrization is:

$$P(X_j = i_j : j \in [n]) = \prod_{\sigma \text{ facet of } \Sigma} \theta_{i_{\sigma}}^{(\sigma)}.$$

- Parametrization is for the entire tensor instead of marginals.
- One set of parameters per facet instead of faces factorizing.

Example: $\Sigma = [12, 13, 23]$

▶ The hierarchical model is known as the "no 3-way interaction model"

$$p_{ijk} = \theta_{ij}^{(12)} \theta_{ik}^{(13)} \theta_{jk}^{(23)}$$

For binary variables, its complex variety has dimension 7 and degree 4. It is cut out by the quartic $p_{000}p_{011}p_{101}p_{110} - p_{001}p_{010}p_{100}p_{111}$.

The marginal independence is given implicitly by factorizations of marginal distributions

$$\sum_{k} p_{ijk} = \sum_{j,k} p_{ijk} \cdot \sum_{i,k} p_{ijk}, \quad \sum_{j} p_{ijk} = \sum_{j,k} p_{ijk} \cdot \sum_{i,j} p_{ijk}, \quad \sum_{i} p_{ijk} = \sum_{i,k} p_{ijk} \cdot \sum_{i,j} p_{ijk}.$$

Its dimension is 5 and it has degree 8.

Kirkup's parametrization

Lemma (Kirkup (2007))

The marginal independence model equals $\mathcal{M}_{\Sigma} = S + \mathcal{L}_{\Sigma}$ where \mathcal{L}_{Σ} is the linear subspace with marginals $P_{\sigma} = 0$ for all $\sigma \in \Sigma$.

Proof.

- Given P ∈ M_Σ, take its marginals P_j, j ∈ [n], corresponding to the distributions of the individual random variables X_j.
- $P' = \bigotimes_j P_j \in S$ and $P P' \in \mathcal{L}_{\Sigma}$ since P and P' have identical marginals and P_{σ} and P'_{σ} are both completely independent.

Note: This parametrization is just $P = MLE_{\mathcal{S}}(P) + correction$ term.

Kirkup's parametrization

Lemma (Kirkup (2007))

The marginal independence model equals $\mathcal{M}_{\Sigma} = S + \mathcal{L}_{\Sigma}$ where \mathcal{L}_{Σ} is the linear subspace with marginals $P_{\sigma} = 0$ for all $\sigma \in \Sigma$.

The defining ideal of \mathcal{M}_{Σ} is generated by homogeneous, quadratic polynomials coming from the Segre equations for each $\sigma \in \Sigma$, e.g., for $\Sigma = [12, 13, 23]$,

- $p_{000}p_{110} + p_{001}p_{110} + p_{000}p_{111} + p_{001}p_{111} = p_{010}p_{100} + p_{011}p_{100} + p_{010}p_{101} + p_{011}p_{101} \qquad (1 \pm 2)$
- $p_{000}p_{101} + p_{010}p_{101} + p_{000}p_{111} + p_{010}p_{111} = p_{001}p_{100} + p_{011}p_{100} + p_{001}p_{110} + p_{011}p_{110} \qquad (1 \pm 3)$
- $p_{000}p_{011} + p_{011}p_{100} + p_{000}p_{111} + p_{100}p_{111} = p_{001}p_{010} + p_{010}p_{101} + p_{001}p_{110} + p_{101}p_{110}$ (2 \pm 3)

The defining ideal of \mathcal{M}_{Σ} is generated by homogeneous, quadratic polynomials coming from the Segre equations for each $\sigma \in \Sigma$, e.g., for $\Sigma = [12, 13, 23]$,

$$q_{\varnothing}q_{12} = q_1q_2 \tag{1112}$$

$$q_{\varnothing}q_{13} = q_1q_3 \tag{1 \pm 3}$$

$$q_{\varnothing}q_{23} = q_2q_3 \tag{2 11 3}$$

In the *Möbius coordinates* q_{\bullet} , the ideal becomes toric.

Toric representation theorem

Theorem

The variety of the marginal independence model \mathcal{M}_{Σ} is irreducible and its prime ideal is toric in Möbius coordinates. That is, it has a parametrization by monomials and its ideal is generated by binomials. The parametrization is

$$q_{i_1...i_n} \mapsto \prod_{j:i_j \neq +} \theta_{i_j}^{(j)} \quad for \quad \{j: i_j \neq +\} \in \Sigma.$$

Moreover, the statistical model \mathcal{M}_{Σ} is a contractible semialgebraic set of dimension

$$\sum_{j=1}^n (d_j-1) + \sum_{\tau \notin \Sigma} \prod_{j \in \tau} (d_j-1).$$

Marginal independence models: Properties

- ▶ Nice parametrization as Segre + linear space.
- Nice binomial equations in Möbius coordinates (but degrees can be high).
- Contractible statistical models.
- Stratify the probability simplex.
- Contain our random graph models and more!

Better coordinates for conditional independence ideals

Consider the constraints $\{X_1 \perp X_2, X_1 \perp X_2 \mid (X_3, X_4), X_1 \perp X_4, X_2 \perp X_4, X_3 \perp X_4\}$ on four binary random variables. Does there exist a distribution which satisfies all of them and no others?

Better coordinates for conditional independence ideals

Consider the constraints $\{X_1 \perp X_2, X_1 \perp X_2 \mid (X_3, X_4), X_1 \perp X_4, X_2 \perp X_4, X_3 \perp X_4\}$ on four binary random variables. Does there exist a distribution which satisfies all of them and no others?

 $q_3 q_4 q_{1234} = q_{134} q_{234}$

 $\begin{aligned} q_3 q_{123} q_4 + q_{13} q_{23} + q_{134} q_{234} + q_3 q_{1234} &= q_3 q_4 q_{1234} + q_3 q_{123} + q_{23} q_{134} + q_{13} q_{234} \\ q_1 q_2 q_4^2 + q_3 q_4 q_{124} + q_{134} q_{234} + q_4 q_{1234} &= q_2 q_4 q_{134} + q_1 q_4 q_{234} + q_3 q_4 q_{1234} + q_4 q_{124} \\ q_1 q_2 q_4^2 + q_1 q_2 q_3 + q_2 q_{13} q_4 + q_1 q_{23} q_4 + q_3 q_{123} q_4 + q_3 q_4 q_{124} + q_{13} q_{23} + q_2 q_{134} + q_1 q_{234} + q_3 q_{1234} + q_4 q_{1234} + q_1 q_{234} + q_3 q_4 q_{124} + q_{13} q_{23} + q_2 q_{134} + q_1 q_{234} + q_3 q_{1234} + q_3 q_{1234} + q_1 q_{234} + q_3 q_{1234} + q_1 q_{234} + q_3 q_4 q_{1234} + q_2 q_{13} + q_1 q_{23} q_4 + q_3 q_{123} + q_1 q_{234} + q_3 q_4 q_{1234} + q_2 q_{13} + q_1 q_{23} q_4 + q_3 q_{123} + q_1 q_{234} + q_3 q_4 q_{1234} + q_1 q_{234} + q_1 q_{234} + q_3 q_{1234} + q_1 q_{234} + q_1 q_{$

Better coordinates for conditional independence ideals

Consider the constraints $\{X_1 \perp X_2, X_1 \perp X_2 \mid (X_3, X_4), X_1 \perp X_4, X_2 \perp X_4, X_3 \perp X_4\}$ on four binary random variables. Does there exist a distribution which satisfies all of them and no others? Yes!

$$q_{1234} = \frac{q_{134}q_{234}}{q_3q_4}$$

$$q_{123} = \frac{q_4q_{13}q_{23} - q_4q_{13}q_{234} - q_4q_{134}q_{23} + q_{134}q_{234}}{q_3q_4(1 - q_4)}$$

$$q_{124} = \frac{q_{134}q_{234} - q_{134}q_2q_3q_4 - q_1q_{234}q_3q_4 + q_1q_2q_3q_4^2}{q_3q_4(1 - q_3)}$$

$$q_{134} = \frac{q_{13}((q_{234}q_4 - q_2q_3q_4^2) - (q_{23}q_4 - q_2q_3q_4)) + q_1q_3q_4(1 - q_4)(q_{23} - q_2q_3(q_{234} - q_{23}q_4))}{q_{234} - q_{23}q_4}$$

Parameter estimation

Given a statistical model \mathcal{M} and a sample distribution $U \in \Delta$, we seek the point in \mathcal{M} which best "explains" the observations in U.

Parameter estimation

Given a statistical model \mathcal{M} and a sample distribution $U \in \Delta$, we seek the point in \mathcal{M} which best "explains" the observations in U.

- Maximum likelihood: $\max \sum u_{\bullet} \log p_{\bullet}$ s.t. $P \in \mathcal{M}$.
- Euclidean distance: $\min \sum ||u_{\bullet} p_{\bullet}||^2$ s.t. $P \in \mathcal{M}$.

Parameter estimation

Given a statistical model \mathcal{M} and a sample distribution $U \in \Delta$, we seek the point in \mathcal{M} which best "explains" the observations in U.

- Maximum likelihood: max $\sum u_{\bullet} \log p_{\bullet}$ s.t. $P \in \mathcal{M}$.
- Euclidean distance: min $\sum ||u_{\bullet} p_{\bullet}||^2$ s.t. $P \in \mathcal{M}$.

For $\mathcal{M} = \mathcal{S}(2,2,2)$, i.e., $\Sigma = [123]$, and $U = (2^{-1}, 2^{-2}, 2^{-3}, 2^{-4}, 2^{-5}, 2^{-6}, 2^{-7}, \underline{2^{-7}})$:

 $\# \mathsf{Real}$ Deg \hat{p}_{000} \hat{p}_{101} \hat{p}_{111} \hat{p}_{001} \hat{p}_{010} \hat{p}_{011} \hat{p}_{100} \hat{p}_{110} ED 17 1 0.500 0.2500.1250.062 0.032 0.016 0.008 0.004 1 ML 1 0.496 0.250 0.126 0.063 0.033 0.016 0.008 0.004

Computed using HomotopyContinuation.jl.

Database of small models

https://mathrepo.mis.mpg.de/MarginalIndependence

dimension	degree	mingens	f-vector	simplicial complex Σ	ED	ML
15	1	()	$(1,4)_5$	[1, 2, 3, 4]	1	1
14	2	(1)	$(1, 4, 1)_6$	[3, 4, 12]	5	1
13	3	(3)	$(1, 4, 2)_7$	[4, 12, 13]	5	9
13	4	(2)	$(1, 4, 2)_7$	[14, 23]	25	1041
12	4	(6)	$(1, 4, 3)_8$	[12, 13, 14]	5	209
12	5	(5)	$(1, 4, 3)_8$	[12, 14, 23]	21	1081
12	5	(5)	$(1, 4, 3)_8$	[4, 12, 13, 23]	21	17
8	16	(21)	$(1, 4, 6, 1)_{12}$	[14, 24, 34, 123]	117	8542
7	18	(28)	$(1, 4, 6, 2)_{13}$	[34, 123, 124]	89	2121
6	20	(36)	$(1, 4, 6, 3)_{14}$	[123, 124, 134]	89	505
5	23	(44)	$(1, 4, 6, 4)_{15}$	[123, 124, 134, 234]	169	561
4	24	(55)	$(1, 4, 6, 4, 1)_{16}$	[1234]	73	1

Open ends

- ▶ The CI model of $1 \perp \{2,3\}$ is not of marginal independence type but nevertheless it is toric in Möbius coordinates: $q_{12} = q_1q_2$, $q_{13} = q_1q_3$, $q_{123} = q_1q_{23}$...
- Kirkup: Is the toric variety of \mathcal{M}_{Σ} always Cohen-Macaulay?
- Side story: Entropic matroids.
- Are the open models $\mathcal{M}_{\Sigma} \cap \Delta^{\circ}$ smooth manifolds?
- ▶ How to select a fitting marginal independence model for given data?
- ► Is the real solution to the affine ED problem generically unique?

References

- Tobias Boege, Sonja Petrović, and Bernd Sturmfels. "Marginal Independence Models". In: *Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation*. ISSAC '22. Villeneuve-d'Ascq, France: Association for Computing Machinery (ACM), 2022, pp. 263–271. DOI: 10.1145/3476446.3536193.
- Mathias Drton and Thomas S. Richardson. "Binary models for marginal independence". In: J. R. Stat. Soc., Ser. B, Stat. Methodol. 70.2 (2008), pp. 287–309. DOI: 10.1111/j.1467–9868.2007.00636.x.
- George A. Kirkup. "Random variables with completely independent subcollections". In: J. Algebra 309.2 (2007), pp. 427–454. DOI: 10.1016/j.jalgebra.2006.06.023.
- Seth Sullivant. *Algebraic Statistics*. Vol. 194. Graduate Studies in Mathematics. American Mathematical Society, 2018.