Polyhedra in information theory

Tobias Boege

Department of Mathematics $\begin{bmatrix} \text{Department of Mathematics} \\ \text{KTH Royal Institute of Technology} \end{bmatrix} \mapsto \begin{bmatrix} \text{Department of Mathematics} \\ \text{UiT The Article University of Norway} \end{bmatrix}$

Discrete Mathematics & Geometry seminar, TU Berlin, 08 May 2024

Entropy

Let X be a random variable taking finitely many values $\{1, \ldots, d\}$ with positive probabilities. Its Shannon entropy is

$$
H(X) := \sum_{i=1}^d p(X = i) \log 1/p(X = i).
$$

 \triangleright H is continuous on $\Delta(d)$ and analytic on the interior.

Entropy

Let X be a random variable taking finitely many values $\{1,\ldots,d\}$ with positive probabilities. Its Shannon entropy is

$$
H(X) := \sum_{i=1}^d p(X = i) \log \frac{1}{p(X = i)}.
$$

- \triangleright H is continuous on $\Delta(d)$ and analytic on the interior.
- ► A random vector $X \in \Delta(d_i : i \in N)$ is a random variable in $\Delta(\prod_{i \in N} d_i)$, so the definition of H extends to vectors.
- \blacktriangleright For a random vector $X=(X_i:i\in \mathit{N})$ we have 2^{N} marginals and we collect their entropies in an entropy profile $h_X: 2^N \to \mathbb{R}$.
	- For example (X, Y) has entropy profile $(0, H(X), H(Y), H(X, Y)) \in \mathbb{R}^4$.

Entropy as information

Figure: Entropy of a binary random variable X as a function of $p = p(X = \text{heads})$.

Let $\bm{\mathsf{H}}_N^*\subseteq\mathbb{R}^{2^N}$ consist of all h_X where X is an N -variate discrete random vector. $\bm{\mathsf{H}}_N^*$ is the image of $\bigcup_{d_1=1}^{\infty}\cdots\bigcup_{d_n=1}^{\infty}\Delta(d_1,\ldots,d_n)$ under the transcendental map $X\mapsto h_X.$

Let $\bm{\mathsf{H}}_N^*\subseteq\mathbb{R}^{2^N}$ consist of all h_X where X is an N -variate discrete random vector. $\bm{\mathsf{H}}_N^*$ is the image of $\bigcup_{d_1=1}^{\infty}\cdots\bigcup_{d_n=1}^{\infty}\Delta(d_1,\ldots,d_n)$ under the transcendental map $X\mapsto h_X.$

Problem

Find a description of the boundary of **H**[∗] 3 .

Let $\bm{\mathsf{H}}_N^*\subseteq\mathbb{R}^{2^N}$ consist of all h_X where X is an N -variate discrete random vector. $\bm{\mathsf{H}}_N^*$ is the image of $\bigcup_{d_1=1}^{\infty}\cdots\bigcup_{d_n=1}^{\infty}\Delta(d_1,\ldots,d_n)$ under the transcendental map $X\mapsto h_X.$

Problem

Find a description of the boundary of **H**[∗] 3 .

 \blacktriangleright Applications in cryptography, coding theory, engineering want to optimize linear functions over **H**[∗] N .

Let $\bm{\mathsf{H}}_N^*\subseteq\mathbb{R}^{2^N}$ consist of all h_X where X is an N -variate discrete random vector. $\bm{\mathsf{H}}_N^*$ is the image of $\bigcup_{d_1=1}^{\infty}\cdots\bigcup_{d_n=1}^{\infty}\Delta(d_1,\ldots,d_n)$ under the transcendental map $X\mapsto h_X.$

Problem

Find a description of the boundary of **H**[∗] 3 .

 \triangleright Applications in cryptography, coding theory, engineering want to optimize linear functions over **H**[∗] N .

Theorem

$$
\overline{\mathbf{H}^*_N} \text{ is a convex cone of dimension } 2^N - 1. \text{ Furthermore } \text{relint}(\overline{\mathbf{H}^*_N}) \subseteq \mathbf{H}^*_N.
$$

Let $\bm{\mathsf{H}}_N^*\subseteq\mathbb{R}^{2^N}$ consist of all h_X where X is an N -variate discrete random vector. $\bm{\mathsf{H}}_N^*$ is the image of $\bigcup_{d_1=1}^{\infty}\cdots\bigcup_{d_n=1}^{\infty}\Delta(d_1,\ldots,d_n)$ under the transcendental map $X\mapsto h_X.$

Problem

Find a description of the boundary of **H**[∗] 3 .

 \triangleright Applications in cryptography, coding theory, engineering want to optimize linear functions over **H**[∗] N .

Theorem

$$
\overline{\mathbf{H}^*_N} \text{ is a convex cone of dimension } 2^N - 1. \text{ Furthermore } \text{relint}(\overline{\mathbf{H}^*_N}) \subseteq \mathbf{H}^*_N.
$$

 \blacktriangleright Elements of the dual cone (linear information inequalities) can give bounds for optimization problems.

Shannon inequalities

 \blacktriangleright A function $h: 2^N \to \mathbb{R}$ is a polymatroid if

$$
\blacktriangleright \ h(\emptyset)=0,
$$

- \blacktriangleright h(I | K) := h(IK) h(K) \geq 0 for disjoint I and K,
- \triangleright h(I : J | K) = h(IK) + h(JK) h(IJK) h(K) ≥ 0 for disjoint I, J, K.

Shannon inequalities

 \blacktriangleright A function $h: 2^N \to \mathbb{R}$ is a polymatroid if

$$
\blacktriangleright h(\emptyset)=0,
$$

- \blacktriangleright h(I | K) := h(IK) h(K) \geq 0 for disjoint I and K,
- \blacktriangleright h(I : J | K) := h(IK) + h(JK) h(IJK) h(K) > 0 for disjoint I, J, K.
- \blacktriangleright The set P_N of polymatroids is a polyhedral cone in \mathbb{R}^{2^N} and $\mathsf{P}_N\supseteq \overline{\mathsf{H}^*_N} \to \textsf{ITIP}.$
- \triangleright The information inequalities in the dual cone of P_N are the Shannon inequalities.

Shannon inequalities

 \blacktriangleright A function $h: 2^N \to \mathbb{R}$ is a polymatroid if

$$
\blacktriangleright h(\emptyset)=0,
$$

- \blacktriangleright h(I | K) := h(IK) h(K) \geq 0 for disjoint I and K,
- \triangleright h(I : J | K) := h(IK) + h(JK) h(IJK) h(K) ≥ 0 for disjoint I, J, K.
- \blacktriangleright The set P_N of polymatroids is a polyhedral cone in \mathbb{R}^{2^N} and $\mathsf{P}_N\supseteq \overline{\mathsf{H}^*_N} \to \textsf{ITIP}.$ \blacktriangleright The information inequalities in the dual cone of P_N are the Shannon inequalities.

Theorem([\[Mat07\]](#page-32-0))

 $\overline{\mathbf{H}_N^*}$ is not polyhedral for $|N|\geq 4$.

► Conjecture: $\overline{\mathbf{H}_N^*}$ is not semialgebraic for $|N| \geq 4$.

Information-theoretical "special position" properties of discrete random variables can be formulated in terms of linear functionals on the entropy profile h_X :

Information-theoretical "special position" properties of discrete random variables can be formulated in terms of linear functionals on the entropy profile h_X :

Information-theoretical "special position" properties of discrete random variables can be formulated in terms of linear functionals on the entropy profile h_X :

Information-theoretical "special position" properties of discrete random variables can be formulated in terms of linear functionals on the entropy profile h_X :

All of these are **linear** on **H**[∗] . Even though entropy is a transcendental function, many of these conditions are **polynomial** in the probabilities \rightarrow algebraic statistics.

Beyond Shannon: Extension properties

All widely used polyhedral outer approximations to $\overline{\bm{\mathsf{H}}_N^*}$ which improve upon $\bm{\mathsf{P}}_\text{A}$ are derived from an extension property which is a theorem of the form:

 \blacktriangleright If $h\in \overline{\mathbf{H}^*_N}$, then there exists $\overline{h}\in \overline{\mathbf{H}^*_{M_\perp}}$ for some $M\supseteq N$ such that $\overline{h}|_N=h$ and some other linear conditions $\varphi(\overline{h}) > 0$ hold.

Beyond Shannon: Extension properties

All widely used polyhedral outer approximations to $\overline{\bm{\mathsf{H}}_N^*}$ which improve upon $\bm{\mathsf{P}}_\text{A}$ are derived from an extension property which is a theorem of the form:

- \blacktriangleright If $h\in \overline{\mathbf{H}^*_N}$, then there exists $\overline{h}\in \overline{\mathbf{H}^*_{M_\perp}}$ for some $M\supseteq N$ such that $\overline{h}|_N=h$ and some other linear conditions $\varphi(\overline{h}) > 0$ hold.
- ► The extension property is encapsulated in its cone $E_N^M = \{\, \overline{h} \in \left| \, \overline{\mathbf{H}_M^*} \right| : \varphi(\overline{h}) \geq 0 \,\}.$

Beyond Shannon: Extension properties

All widely used polyhedral outer approximations to $\overline{\bm{\mathsf{H}}_N^*}$ which improve upon $\bm{\mathsf{P}}_\text{A}$ are derived from an extension property which is a theorem of the form:

- \blacktriangleright If $h\in \overline{\mathbf{H}^*_N}$, then there exists $\overline{h}\in \overline{\mathbf{H}^*_{M_\perp}}$ for some $M\supseteq N$ such that $\overline{h}|_N=h$ and some other linear conditions $\varphi(\overline{h}) > 0$ hold.
- ► The extension property is encapsulated in its cone $E_N^M = \{\, \overline{h} \in \left| \, \overline{\mathbf{H}_M^*} \right| : \varphi(\overline{h}) \geq 0 \,\}.$

Extension principle: Let E_N^M be the cone of an extension property and $\pi_{{\sf N}}^{M}:\mathbb{R}^{2^M}\to\mathbb{R}^{2^N}$ the canonical projection. Then $\overline{\mathbf{H}^*_{\sf N}}\subseteq\pi_{{\sf N}}^{M}(E^M_{{\sf N}}).$

- \blacktriangleright Consider $h \in \mathbf{P}_N$ and pick any $L \subseteq N$.
- An L-copy of N is a set M with $|N| = |M|$ and $N \cap M = L$ with a bijection $\sigma : N \to M$ fixing L pointwise.

- \blacktriangleright Consider $h \in \mathbf{P}_N$ and pick any $L \subseteq N$.
- An L-copy of N is a set M with $|N| = |M|$ and $N \cap M = L$ with a bijection $\sigma : N \to M$ fixing L pointwise. This induces an L-copy of h: $\sigma(h) \in P_M$.

- \blacktriangleright Consider $h \in \mathbf{P}_N$ and pick any $L \subseteq N$.
- An L-copy of N is a set M with $|N| = |M|$ and $N \cap M = L$ with a bijection $\sigma : \mathbb{N} \to \mathbb{M}$ fixing L pointwise. This induces an L-copy of h: $\sigma(h) \in \mathbf{P}_M$.

The Copy lemma states:

- \blacktriangleright Consider $h \in \mathbf{P}_N$ and pick any $L \subseteq N$.
- An L-copy of N is a set M with $|N| = |M|$ and $N \cap M = L$ with a bijection $\sigma : \mathbb{N} \to \mathbb{M}$ fixing L pointwise. This induces an L-copy of h: $\sigma(h) \in \mathbf{P}_M$.

The Copy lemma states:

► Let $h \in \overline{H_N^*}$ and $L \subseteq N$, fix an *L*-copy $\sigma : N \to M$ of N.

- \blacktriangleright Consider $h \in \mathbf{P}_N$ and pick any $L \subseteq N$.
- An L-copy of N is a set M with $|N| = |M|$ and $N \cap M = L$ with a bijection $\sigma : \mathbb{N} \to \mathbb{M}$ fixing L pointwise. This induces an L-copy of h: $\sigma(h) \in \mathbf{P}_M$.

The Copy lemma states:

► Let $h \in \overline{H_N^*}$ and $L \subseteq N$, fix an *L*-copy $\sigma : N \to M$ of N. \blacktriangleright There exists $\overline{h} \in \left| \overline{\mathbf{H}^*_{NM}} \right|$ such that

$$
\overline{h}|_N=h, \quad \overline{h}|_M=\sigma(h), \quad \overline{h}(N:M \mid L)=0.
$$

- \blacktriangleright Consider $h \in \mathbf{P}_N$ and pick any $L \subseteq N$.
- An L-copy of N is a set M with $|N| = |M|$ and $N \cap M = L$ with a bijection $\sigma : \mathbb{N} \to \mathbb{M}$ fixing L pointwise. This induces an L-copy of h: $\sigma(h) \in \mathbf{P}_M$.

The Copy lemma states:

► Let $h \in \overline{H_N^*}$ and $L \subseteq N$, fix an *L*-copy $\sigma : N \to M$ of N. \blacktriangleright There exists $\overline{h} \in \left| \overline{\mathbf{H}^*_{NM}} \right|$ such that

$$
\overline{h}|_N=h, \quad \overline{h}|_M=\sigma(h), \quad \overline{h}(N:M \mid L)=0.
$$

► Relaxation: only require \overline{h} ∈ \vert **P**_{NM} ! This gives a tighter inner bound **P**_N ⊇ ∩_{L⊆N}S^L_N ⊇ $\overline{H_N^*}$. Exploited numerous times: [\[DFZ11\]](#page-32-1), [\[Boe23\]](#page-32-2), …

Extension properties: Ahlswede–Körner & Slepian–Wolf

The Ahlswede–Körner lemma states:

- **►** Let $h \in \overline{H_N^*}$ and $J, K \subseteq N$.
- ▶ There exists $\overline{h} \in \overline{\mathbf{H}^*_{N\mathbf{z}}}$ such that

$$
\overline{h}|_N=h,\quad \overline{h}(z\mid K)=0,\quad \overline{h}(l\mid z)=\overline{h}(l\mid J) \text{ for every } l\subseteq K.
$$

Extension properties: Ahlswede–Körner & Slepian–Wolf

The Ahlswede–Körner lemma states:

- **►** Let $h \in \overline{H_N^*}$ and $J, K \subseteq N$.
- ▶ There exists $\overline{h} \in \overline{\mathbf{H}^*_{N\mathbf{z}}}$ such that

$$
\overline{h}|_N=h,\quad \overline{h}(z\mid K)=0,\quad \overline{h}(I\mid z)=\overline{h}(I\mid J) \text{ for every } I\subseteq K.
$$

The Slepian–Wolf lemma states:

► Let $h \in \overline{H_N^*}$ and $J, K \subseteq N$. ▶ There exists $\overline{h} \in \overline{\mathbf{H}^*_{N\mathbf{z}}}$ such that

$$
\overline{h}|_N=h,\quad \overline{h}(z\mid K)=0,\quad \overline{h}(z)=\overline{h}(K\mid J),\quad \overline{h}(K\mid Jz)=0.
$$

 \blacktriangleright There exist many more extension properties for linear or algebraic representability of matroids (stronger properties than **H**∗).

- \triangleright There exist many more extension properties for linear or algebraic representability of matroids (stronger properties than **H**∗).
- \triangleright Several infinite families of information inequalities are derived from only the Copy lemma. They have been tabulated but are not available FAIRly \rightarrow GMM problem.

Rule [43] Given:

 $aI(A;B)$

- $\leq bl(A;B|C) + cI(A;C|B) + zI(B;C|A)$
- $+ eI(A;B|D) + fI(A;D|B)$
- $+(b'+d'+z)I(B;D|A)+hI(C;D)$
- $+ iI(C; D|A) + zI(C; D|B)$

and

 $a'I(A;B)$ $\langle b'I(A;B|C) + c'I(A;C|B) + d'I(B;C|A)$ + $e'I(A;B|D) + f'I(A;D|B) + q'I(B;D|A)$ + $h'I(C; D) + i'I(C; D|A) + i'I(C; D|B)$

Get:

 $(a + a' + z)I(A; B)$ $\langle (a+b+c+f+b'+2z)I(A;B|C) \rangle$ + $(-a+b+c+e+c'+z)I(A;C|B)$ $+ (d' + z)I(B; C|A) + (e + e' + z)I(A; B|D)$ + $(f + f')I(A; D|B)$ + $(-a'+b'+e'+q'+i')I(B;D|A)$ + $(h+h'+z)I(C;D) + (i+i')I(C;D|A)$ $+$ $(j')I(C;D|B)$

Using: RS is copy of CD over AB Substitutions: A C R S; AD B R S

Abbreviated Proof of (75): T: D-copy of A over BCRS. $1.1:$ -a.c. +c.d. +r.cd. a. +c.s. a. +b.d. s. +a. bs.d. +2a.cr bs. +a. bs.cr $+d$ r abes $+d$ s aber

 SL_1 d t a +c d t +a t cd +c r t +a t cr +d r act +b t acdr +a t bs $+c$ s at $+b$ t acs $+d$ t s $+a$ s dt $+b$ d ast $+c$ t abds $+a$ r best +r.ad.best +s.ad.bert +d.t.abers C2L1: 3t.ad.bers

S: C-copy of A over BDR.

L2: $-2a.c. +2c.d. +a.b.cr +2a.c.br +c.ar.b +a.b.dr +4a.d.br$ $+2a$, br.d $+2d$, br.a $+2r$, cd.a $+d$, r.abc

 $SL2$: c.s.b +a.b.cs +c.d.s +a.s.cd +d.s.abc +3a.s.br +3c.s.br $+c$ rabs $+d$ rs $+a$ s dr $+d$ rabs $+d$ bras $+c$ rads $+b$ s acdr $+2c$ s abdr $+2d$ s aber

 $C2L2.7s$ ac bdr

R: D-copy of C over AB.

S: c ra +3 c rb +dra +7drb + c .dr +2br.acd + r ab.cd $+9c$.r.abd $+3d$.r.abc

 $C2 \cdot 16$ r ed ab

- \triangleright There exist many more extension properties for linear or algebraic representability of matroids (stronger properties than **H**∗).
- \triangleright Several infinite families of information inequalities are derived from only the Copy lemma. They have been tabulated but are not available FAIRly \rightarrow GMM problem.
- \triangleright Want a framework to combine and iterate extension properties based on polyhedra and linear programming and certificates for the validity of information inequalities.
- \triangleright There exist many more extension properties for linear or algebraic representability of matroids (stronger properties than **H**∗).
- \triangleright Several infinite families of information inequalities are derived from only the Copy lemma. They have been tabulated but are not available FAIRly \rightarrow GMM problem.
- \triangleright Want a framework to combine and iterate extension properties based on polyhedra and linear programming and certificates for the validity of information inequalities.

Thank you!

References

- [BFP24] Michael Bamiloshin, Oriol Farràs, and Carles Padró. A Note on Extension Properties and Representations of Matroids. 2024. arXiv: [2306.15085 \[math.CO\]](https://arxiv.org/abs/2306.15085).
- [Boe23] Tobias Boege. "Selfadhesivity in Gaussian conditional independence structures". In: Int. J. Approx. Reasoning (2023). DOI: [10.1016/j.ijar.2023.109027](https://doi.org/10.1016/j.ijar.2023.109027).
- [DFZ11] Randall Dougherty, Chris Freiling, and Kenneth Zeger. Non-Shannon Information Inequalities in Four Random Variables. 2011. arXiv: [1104.3602v1 \[cs.IT\]](https://arxiv.org/abs/1104.3602v1).
- [Mat06] František Matúš. "Piecewise linear conditional information inequality". In: IEEE Trans. Inf. Theory 52.1 (2006), pp. 236-238. DOI: [10.1109/TIT.2005.860438](https://doi.org/10.1109/TIT.2005.860438).
- [Mat07] František Matúš. "Infinitely many information inequalities". In: Proc. IEEE ISIT 2007. 2007, pp. 41–44.
- [Mat18] František Matúš. "Classes of matroids closed under minors and principal extensions". In: Combinatorica 38.4 (2018), pp. 935–954. DOI: [10.1007/s00493-017-3534-y](https://doi.org/10.1007/s00493-017-3534-y).