Real birational implicitization for statistical models

Tobias Boege and Liam Solus

arXiv:2410.23102

Department of Mathematics and Statistics UiT The Arctic University of Norway

> Algebraic Statistics München, 25 March 2025

Supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101110545.

Given a rational parametrization α: Θ → ℝⁿ, find an implicit description of the image α(Θ) in terms of polynomial equations and inequalities in ℝⁿ.

- Given a rational parametrization α: Θ → ℝⁿ, find an implicit description of the image α(Θ) in terms of polynomial equations and inequalities in ℝⁿ.
 - \blacktriangleright Θ parameter space often simple and linear.

- Given a rational parametrization α: Θ → ℝⁿ, find an implicit description of the image α(Θ) in terms of polynomial equations and inequalities in ℝⁿ.
 - \blacktriangleright Θ parameter space often simple and linear.
 - ▶ $\mathcal{M} = \alpha(\Theta)$ model usually non-linear.

- ► Given a rational parametrization α: Θ → ℝⁿ, find an implicit description of the image α(Θ) in terms of polynomial equations and inequalities in ℝⁿ.
 - \blacktriangleright Θ parameter space often simple and linear.
 - $\mathcal{M} = \alpha(\Theta)$ model usually non-linear.
- $\blacktriangleright \ \alpha$ can be used to generate points on the model or optimize over it.

- ► Given a rational parametrization α: Θ → ℝⁿ, find an implicit description of the image α(Θ) in terms of polynomial equations and inequalities in ℝⁿ.
 - \blacktriangleright Θ parameter space often simple and linear.
 - $\mathcal{M} = \alpha(\Theta)$ model usually non-linear.
- $\blacktriangleright \ \alpha$ can be used to generate points on the model or optimize over it.
- ▶ Implicit representation can be used to test model membership

- ► Given a rational parametrization α: Θ → ℝⁿ, find an implicit description of the image α(Θ) in terms of polynomial equations and inequalities in ℝⁿ.
 - \blacktriangleright Θ parameter space often simple and linear.
 - $\mathcal{M} = \alpha(\Theta)$ model usually non-linear.
- $\blacktriangleright \ \alpha$ can be used to generate points on the model or optimize over it.
- ▶ Implicit representation can be used to test model membership
 - ▶ ... to perform hypothesis tests

- ► Given a rational parametrization α: Θ → ℝⁿ, find an implicit description of the image α(Θ) in terms of polynomial equations and inequalities in ℝⁿ.
 - \blacktriangleright Θ parameter space often simple and linear.
 - $\mathcal{M} = \alpha(\Theta)$ model usually non-linear.
- $\blacktriangleright \ \alpha$ can be used to generate points on the model or optimize over it.
- ▶ Implicit representation can be used to test model membership
 - ▶ ... to perform hypothesis tests
 - ► ... to distinguish models

- ► Given a rational parametrization α: Θ → ℝⁿ, find an implicit description of the image α(Θ) in terms of polynomial equations and inequalities in ℝⁿ.
 - \blacktriangleright Θ parameter space often simple and linear.
 - $\mathcal{M} = \alpha(\Theta)$ model usually non-linear.
- $\blacktriangleright \ \alpha$ can be used to generate points on the model or optimize over it.
- ▶ Implicit representation can be used to test model membership
 - ▶ ... to perform hypothesis tests
 - ► ... to distinguish models
 - ▶ ... for structure learning

• Suppose $\alpha : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ has a rational inverse β . (Rational identifiability!)

- Suppose $\alpha : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ has a rational inverse β . (Rational identifiability!)
- Let Θ be a basic semialgebraic parameter space.

- Suppose $\alpha : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ has a rational inverse β . (Rational identifiability!)
- Let Θ be a basic semialgebraic parameter space.
- Assume that the denominators of β are positive on $\mathcal{M} = \alpha(\Theta)$.

- ▶ Suppose $\alpha: \mathbb{R}^n \dashrightarrow \mathbb{R}^n$ has a rational inverse β . (Rational identifiability!)
- Let Θ be a basic semialgebraic parameter space.
- Assume that the denominators of β are positive on $\mathcal{M} = \alpha(\Theta)$.

▶ The pullback $\beta^*(f)$ of a polynomial f on Θ is the rational function $f \circ \beta$ on \mathcal{M} .

- Suppose $\alpha : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ has a rational inverse β . (Rational identifiability!)
- Let Θ be a basic semialgebraic parameter space.
- Assume that the denominators of β are positive on $\mathcal{M} = \alpha(\Theta)$.

- ▶ The pullback $\beta^*(f)$ of a polynomial f on Θ is the rational function $f \circ \beta$ on \mathcal{M} .
- f vanishes on Θ if and only if the numerator of $\beta^*(f)$ vanishes on \mathcal{M} .

- Suppose $\alpha : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ has a rational inverse β . (Rational identifiability!)
- Let Θ be a basic semialgebraic parameter space.
- Assume that the denominators of β are positive on $\mathcal{M} = \alpha(\Theta)$.

- ► The pullback $\beta^*(f)$ of a polynomial f on Θ is the rational function $f \circ \beta$ on \mathcal{M} .
- f vanishes on Θ if and only if the numerator of $\beta^*(f)$ vanishes on \mathcal{M} .
- \blacktriangleright By birationality, all vanishing polynomials on ${\cal M}$ can be obtained in this way.

- Suppose $\alpha : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ has a rational inverse β . (Rational identifiability!)
- Let Θ be a basic semialgebraic parameter space.
- Assume that the denominators of β are positive on $\mathcal{M} = \alpha(\Theta)$.

- ► The pullback $\beta^*(f)$ of a polynomial f on Θ is the rational function $f \circ \beta$ on \mathcal{M} .
- f vanishes on Θ if and only if the numerator of $\beta^*(f)$ vanishes on \mathcal{M} .
- \blacktriangleright By birationality, all vanishing polynomials on ${\cal M}$ can be obtained in this way.
- ► Analogous for non-negative, non-vanishing and positive polynomials.

- Suppose $\alpha : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ has a rational inverse β . (Rational identifiability!)
- Let Θ be a basic semialgebraic parameter space.
- Assume that the denominators of β are positive on $\mathcal{M} = \alpha(\Theta)$.

- ► The pullback $\beta^*(f)$ of a polynomial f on Θ is the rational function $f \circ \beta$ on \mathcal{M} .
- f vanishes on Θ if and only if the numerator of $\beta^*(f)$ vanishes on \mathcal{M} .
- \blacktriangleright By birationality, all vanishing polynomials on ${\cal M}$ can be obtained in this way.
- ► Analogous for non-negative, non-vanishing and positive polynomials.

If the geometry of Θ is simple, then so is that of \mathcal{M} .

▶
$$A = \mathbb{R}[x_1, ..., x_n]$$
 and $\check{A} = \mathbb{R}[\check{x}_1, ..., \check{x}_n]$ are affine \mathbb{R} -algebras

- ▶ $A = \mathbb{R}[x_1, ..., x_n]$ and $\check{A} = \mathbb{R}[\check{x}_1, ..., \check{x}_n]$ are affine \mathbb{R} -algebras.
- $S \subseteq A$ and $\check{S} \subseteq \check{A}$ multiplicatively closed subsets.

- $A = \mathbb{R}[x_1, \dots, x_n]$ and $\check{A} = \mathbb{R}[\check{x}_1, \dots, \check{x}_n]$ are affine \mathbb{R} -algebras.
- $S \subseteq A$ and $\check{S} \subseteq \check{A}$ multiplicatively closed subsets.
- ► Assume that $\alpha^* : S^{-1}A \longrightarrow \check{S}^{-1}\check{A}$ is an \mathbb{R} -algebra isomorphism with inverse β^* .

- ▶ $A = \mathbb{R}[x_1, ..., x_n]$ and $\check{A} = \mathbb{R}[\check{x}_1, ..., \check{x}_n]$ are affine \mathbb{R} -algebras.
- ▶ $S \subseteq A$ and $\check{S} \subseteq \check{A}$ multiplicatively closed subsets.
- ► Assume that $\alpha^* : S^{-1}A \longrightarrow \check{S}^{-1}\check{A}$ is an \mathbb{R} -algebra isomorphism with inverse β^* .
- We may assume that \check{S} is finitely generated by \check{s}_{ℓ} and that $S^{\pm} = \beta^*(\check{S}^{\pm})$.

- $A = \mathbb{R}[x_1, \dots, x_n]$ and $\check{A} = \mathbb{R}[\check{x}_1, \dots, \check{x}_n]$ are affine \mathbb{R} -algebras.
- ▶ $S \subseteq A$ and $\check{S} \subseteq \check{A}$ multiplicatively closed subsets.
- ► Assume that $\alpha^* : S^{-1}A \longrightarrow \check{S}^{-1}\check{A}$ is an \mathbb{R} -algebra isomorphism with inverse β^* .
- We may assume that \check{S} is finitely generated by \check{s}_{ℓ} and that $S^{\pm} = \beta^*(\check{S}^{\pm})$.
- ▶ For a fraction $f/u \in S^{-1}A$ let $\operatorname{num}(f/u) := f$.

•
$$A = \mathbb{R}[x_1, \dots, x_n]$$
 and $\check{A} = \mathbb{R}[\check{x}_1, \dots, \check{x}_n]$ are affine \mathbb{R} -algebras.

•
$$S \subseteq A$$
 and $\check{S} \subseteq \check{A}$ multiplicatively closed subsets.

- Assume that $\alpha^* : S^{-1}A \longrightarrow \check{S}^{-1}\check{A}$ is an \mathbb{R} -algebra isomorphism with inverse β^* .
- We may assume that \check{S} is finitely generated by \check{s}_{ℓ} and that $S^{\pm} = \beta^*(\check{S}^{\pm})$.

▶ For a fraction
$$f/u \in S^{-1}A$$
 let $\operatorname{num}(f/u) \coloneqq f$.

Theorem

If $\Theta = \{\check{x} \in \mathbb{R}^n : \check{f}_i(\check{x}) = 0, \ \check{p}_j(\check{x}) \ge 0, \ \check{u}_k(\check{x}) \ne 0, \ \check{s}_\ell(\check{x}) > 0\}$ is non-empty,

•
$$A = \mathbb{R}[x_1, \dots, x_n]$$
 and $\check{A} = \mathbb{R}[\check{x}_1, \dots, \check{x}_n]$ are affine \mathbb{R} -algebras.

•
$$S \subseteq A$$
 and $\check{S} \subseteq \check{A}$ multiplicatively closed subsets.

- Assume that $\alpha^* \colon S^{-1}A \longrightarrow \check{S}^{-1}\check{A}$ is an \mathbb{R} -algebra isomorphism with inverse β^* .
- We may assume that \check{S} is finitely generated by \check{s}_{ℓ} and that $S^{\pm} = \beta^*(\check{S}^{\pm})$.

▶ For a fraction
$$f/u \in S^{-1}A$$
 let $\operatorname{num}(f/u) := f$.

Theorem

If $\Theta = \{\check{x} \in \mathbb{R}^n : \check{f}_i(\check{x}) = 0, \ \check{p}_j(\check{x}) \ge 0, \ \check{u}_k(\check{x}) \ne 0, \ \check{s}_\ell(\check{x}) > 0\}$ is non-empty, then

$$\mathcal{M} = \alpha(\Theta) = \{ x \in \mathbb{R}^n : f_i(x) = 0, \ p_j(x) \ge 0, \ u_k(x) \neq 0, \ s_\ell(x) > 0 \},$$

where $f_i = \operatorname{num} \beta^*(\check{f}_i)$, $p_j = \operatorname{num} \beta^*(\check{p}_j)$ and $u_k = \operatorname{num} \beta^*(\check{u}_k)$.

Theorem

If Θ is an irreducible algebraic variety with vanishing ideal generated by $\check{f}_i \in \check{A}$ and disjoint from \check{S} , then the vanishing ideal of $\alpha(\Theta)$ is generated by num $\beta^*(\check{f}_i)$ up to saturation at S.

Theorem

If Θ is an irreducible algebraic variety with vanishing ideal generated by $\check{f}_i \in \check{A}$ and disjoint from \check{S} , then the vanishing ideal of $\alpha(\Theta)$ is generated by num $\beta^*(\check{f}_i)$ up to saturation at S.

Theorem

If Θ is an irreducible algebraic variety with vanishing ideal generated by $\check{f}_i \in \check{A}$ and disjoint from \check{S} , then the vanishing ideal of $\alpha(\Theta)$ is generated by num $\beta^*(\check{f}_i)$ up to saturation at S.

► Gives an easy model equivalence test:

• Let $\mathcal{M}_1 = \alpha_1(\Theta_1)$ and $\mathcal{M}_2 = \alpha_2(\Theta_2)$ in a common ambient space.

Theorem

If Θ is an irreducible algebraic variety with vanishing ideal generated by $\check{f}_i \in \check{A}$ and disjoint from \check{S} , then the vanishing ideal of $\alpha(\Theta)$ is generated by num $\beta^*(\check{f}_i)$ up to saturation at S.

▶ Let
$$\mathcal{M}_1 = \alpha_1(\Theta_1)$$
 and $\mathcal{M}_2 = \alpha_2(\Theta_2)$ in a common ambient space.

►
$$\Theta_1 = \mathcal{V}(\check{f}_i : i = 1, ..., r)$$
 and $\Theta_2 = \mathcal{V}(\check{g}_i : i = 1, ..., s)$ irreducible.

Theorem

If Θ is an irreducible algebraic variety with vanishing ideal generated by $\check{f}_i \in \check{A}$ and disjoint from \check{S} , then the vanishing ideal of $\alpha(\Theta)$ is generated by num $\beta^*(\check{f}_i)$ up to saturation at S.

- Let $\mathcal{M}_1 = \alpha_1(\Theta_1)$ and $\mathcal{M}_2 = \alpha_2(\Theta_2)$ in a common ambient space.
- $\Theta_1 = \mathcal{V}(\check{f}_i : i = 1, ..., r)$ and $\Theta_2 = \mathcal{V}(\check{g}_i : i = 1, ..., s)$ irreducible.
- Then $\mathcal{M}_1 \subseteq \mathcal{M}_2$ if and only if $\alpha_1^*(\operatorname{num} \beta_2^*(\check{g}_i)) = 0$ on Θ_1 .

Theorem

If Θ is an irreducible algebraic variety with vanishing ideal generated by $\check{f}_i \in \check{A}$ and disjoint from \check{S} , then the vanishing ideal of $\alpha(\Theta)$ is generated by num $\beta^*(\check{f}_i)$ up to saturation at S.

- ▶ Let $M_1 = \alpha_1(\Theta_1)$ and $M_2 = \alpha_2(\Theta_2)$ in a common ambient space.
- $\Theta_1 = \mathcal{V}(\check{f}_i : i = 1, ..., r)$ and $\Theta_2 = \mathcal{V}(\check{g}_i : i = 1, ..., s)$ irreducible.
- Then $\mathcal{M}_1 \subseteq \mathcal{M}_2$ if and only if $\alpha_1^*(\operatorname{num} \beta_2^*(\check{g}_i)) = 0$ on Θ_1 .
- \blacktriangleright Θ_i are usually linear spaces so this is much simpler than Gröbner bases.

Theorem

If Θ is an irreducible algebraic variety with vanishing ideal generated by $\check{f}_i \in \check{A}$ and disjoint from \check{S} , then the vanishing ideal of $\alpha(\Theta)$ is generated by num $\beta^*(\check{f}_i)$ up to saturation at S.

- Let $\mathcal{M}_1 = \alpha_1(\Theta_1)$ and $\mathcal{M}_2 = \alpha_2(\Theta_2)$ in a common ambient space.
- $\Theta_1 = \mathcal{V}(\check{f}_i : i = 1, ..., r)$ and $\Theta_2 = \mathcal{V}(\check{g}_i : i = 1, ..., s)$ irreducible.
- Then $\mathcal{M}_1 \subseteq \mathcal{M}_2$ if and only if $\alpha_1^*(\operatorname{num} \beta_2^*(\check{g}_i)) = 0$ on Θ_1 .
- \blacktriangleright Θ_i are usually linear spaces so this is much simpler than Gröbner bases.
- ▶ Useful to detect structure identifiability in graphical models.

Fix a DAG G (topologically ordered) and a complete DAG K such that $G \subseteq K$.

- Fix a DAG G (topologically ordered) and a complete DAG K such that $G \subseteq K$.
- ► Consider the parametrization $\alpha(\Omega, \Lambda) = (I \Lambda)^{-T} \Omega (I \Lambda)^{-1}$ of K

- Fix a DAG G (topologically ordered) and a complete DAG K such that $G \subseteq K$.
- Consider the parametrization $\alpha(\Omega, \Lambda) = (I \Lambda)^{-T} \Omega (I \Lambda)^{-1}$ of *K* and the polyhedral cone $\Theta = \{(\Omega, \Lambda) : \omega_{ii} > 0, \lambda_{ij} = 0 \text{ for } ij \notin E(G)\}.$

- Fix a DAG G (topologically ordered) and a complete DAG K such that $G \subseteq K$.
- Consider the parametrization $\alpha(\Omega, \Lambda) = (I \Lambda)^{-T} \Omega (I \Lambda)^{-1}$ of Kand the polyhedral cone $\Theta = \{(\Omega, \Lambda) : \omega_{ii} > 0, \lambda_{ij} = 0 \text{ for } ij \notin E(G)\}.$
- The Gaussian DAG model of G is $\mathcal{M}(G) = \alpha(\Theta)$.

- Fix a DAG G (topologically ordered) and a complete DAG K such that $G \subseteq K$.
- Consider the parametrization $\alpha(\Omega, \Lambda) = (I \Lambda)^{-T} \Omega (I \Lambda)^{-1}$ of *K* and the polyhedral cone $\Theta = \{(\Omega, \Lambda) : \omega_{ii} > 0, \lambda_{ij} = 0 \text{ for } ij \notin E(G)\}.$
- The Gaussian DAG model of G is $\mathcal{M}(G) = \alpha(\Theta)$.
- ▶ Use global rational identifiability of the parameters:

$$eta^*(\omega_{ii}) = rac{|\mathbf{\Sigma}_{[i]}|}{|\mathbf{\Sigma}_{[i-1]}|}, \quad eta^*(\lambda_{ij}) = rac{|\mathbf{\Sigma}_{ij|[j-1]\setminus i}|}{|\mathbf{\Sigma}_{[j-1]}|}, ext{ for } i < j.$$

- Fix a DAG G (topologically ordered) and a complete DAG K such that $G \subseteq K$.
- Consider the parametrization $\alpha(\Omega, \Lambda) = (I \Lambda)^{-T} \Omega (I \Lambda)^{-1}$ of *K* and the polyhedral cone $\Theta = \{(\Omega, \Lambda) : \omega_{ii} > 0, \lambda_{ij} = 0 \text{ for } ij \notin E(G)\}.$
- The Gaussian DAG model of G is $\mathcal{M}(G) = \alpha(\Theta)$.
- ▶ Use global rational identifiability of the parameters:

$$\beta^*(\omega_{ii}) = \frac{|\boldsymbol{\Sigma}_{[i]}|}{|\boldsymbol{\Sigma}_{[i-1]}|}, \quad \beta^*(\lambda_{ij}) = \frac{|\boldsymbol{\Sigma}_{ij|[j-1]\setminus i}|}{|\boldsymbol{\Sigma}_{[j-1]}|}, \text{ for } i < j.$$

► The model is contained in PD_V and its vanishing ideal is the saturation of Cl_G = ⟨|∑_{ij}|_[j-1]⟩_i| : ij ∉ E(G)⟩ at the leading principal minors.

▶ The numerators of β^* recover well-known Markov properties:

- \blacktriangleright The numerators of β^* recover well-known Markov properties:
 - ▶ Undirected Gaussian graphical models: $[i \perp j \mid V \setminus ij]$ for $ij \notin G$.

 \blacktriangleright The numerators of β^* recover well-known Markov properties:

- ▶ Undirected Gaussian graphical models: $[i \perp j \mid V \setminus ij]$ for $ij \notin G$.
- ▶ Gaussian Bayesian networks: $[i \perp j \mid [j-1] \setminus i]$ for $ij \notin G$.

▶ The numerators of β^* recover well-known Markov properties:

- ▶ Undirected Gaussian graphical models: $[i \perp j \mid V \setminus ij]$ for $ij \notin G$.
- ▶ Gaussian Bayesian networks: $[i \perp j \mid [j-1] \setminus i]$ for $ij \notin G$.
- ► Staged trees & discrete Bayesian networks: $p_{[v]}p_{[w']} = p_{[v']}p_{[w]}$ [DG20; GMS06]

▶ The numerators of β^* recover well-known Markov properties:

- ▶ Undirected Gaussian graphical models: $[i \perp j \mid V \setminus ij]$ for $ij \notin G$.
- ▶ Gaussian Bayesian networks: $[i \perp j \mid [j-1] \setminus i]$ for $ij \notin G$.
- ► Staged trees & discrete Bayesian networks: $p_{[v]}p_{[w']} = p_{[v']}p_{[w]}$ [DG20; GMS06]
- ▶ Our result also provides an explicit saturation that produces the vanishing ideal.

- \blacktriangleright The numerators of β^* recover well-known Markov properties:
 - ▶ Undirected Gaussian graphical models: $[i \perp j \mid V \setminus ij]$ for $ij \notin G$.
 - ▶ Gaussian Bayesian networks: $[i \perp j \mid [j-1] \setminus i]$ for $ij \notin G$.
 - ► Staged trees & discrete Bayesian networks: $p_{[v]}p_{[w']} = p_{[v']}p_{[w]}$ [DG20; GMS06]
- ▶ Our result also provides an explicit saturation that produces the vanishing ideal.
- ► Unified technique for discrete and Gaussian models.
- ► Resolves a sharpening of a conjecture of Sullivant [Sul08].

 \blacktriangleright The numerators of β^* recover well-known Markov properties:

▶ Undirected Gaussian graphical models: $[i \perp j \mid V \setminus ij]$ for $ij \notin G$.

- ▶ Gaussian Bayesian networks: $[i \perp j \mid [j-1] \setminus i]$ for $ij \notin G$.
- ► Staged trees & discrete Bayesian networks: $p_{[v]}p_{[w']} = p_{[v']}p_{[w]}$ [DG20; GMS06]
- ▶ Our result also provides an explicit saturation that produces the vanishing ideal.
- ▶ Unified technique for discrete and Gaussian models.
- ► Resolves a sharpening of a conjecture of Sullivant [Sul08].
- ► Transparently extends to other equational constraints like colored DAGs:

 $\lambda_{ij} = \lambda_{kl}$ whenever $ij \in E(G)$ and $kl \in E(G)$ have the same color.

 \blacktriangleright The numerators of β^* recover well-known Markov properties:

▶ Undirected Gaussian graphical models: $[i \perp j \mid V \setminus ij]$ for $ij \notin G$.

- ▶ Gaussian Bayesian networks: $[i \perp j \mid [j-1] \setminus i]$ for $ij \notin G$.
- ► Staged trees & discrete Bayesian networks: $p_{[v]}p_{[w']} = p_{[v']}p_{[w]}$ [DG20; GMS06]
- ▶ Our result also provides an explicit saturation that produces the vanishing ideal.
- ▶ Unified technique for discrete and Gaussian models.
- ► Resolves a sharpening of a conjecture of Sullivant [Sul08].
- ► Transparently extends to other equational constraints like colored DAGs:

 $\lambda_{ij} = \lambda_{kl}$ whenever $ij \in E(G)$ and $kl \in E(G)$ have the same color.

Yields constraints of the sort $|\Sigma_{[l-1]}||\Sigma_{ij|[j-1]\setminus i}| = |\Sigma_{[k-1]}||\Sigma_{kl|[l-1]\setminus k}|$ [BKMS24].

Hard implicitizations become easy

```
-- Vanishing ideal via built-in elimination method:
time I1 = gaussianVanishingIdeal R;
```

```
-- Vanishing ideal via saturation:
time (
 prs = for i in V list (
    P := toList parents(G, i);
    if #P == 0 then 1 else det submatrix(S, P, P)
 );
  J = ideal for ij in toList(allE-set(edges G)) list (
    P := toList parents(G, ij#1);
    det submatrix(S, {ij#0}|P, {ij#1}|P)
 ):
  I2 = fold(saturate, J, prs);
);
```


I1 == I2 --> true

Hard implicitizations become easy

-- Vanishing ideal via built-in elimination method: 3 hours and 31 minutes time I1 = gaussianVanishingIdeal R;

```
-- Vanishing ideal via saturation:
time (
 prs = for i in V list (
    P := toList parents(G, i);
    if #P == 0 then 1 else det submatrix(S, P, P)
 );
  J = ideal for ij in toList(allE-set(edges G)) list (
    P := toList parents(G, ij#1);
    det submatrix(S, {ij#0}|P, {ij#1}|P)
 ):
  I2 = fold(saturate, J, prs);
);
```


I1 == I2 --> true

Hard implicitizations become easy

-- Vanishing ideal via built-in elimination method: 3 hours and 31 minutes time I1 = gaussianVanishingIdeal R;

```
-- Vanishing ideal via saturation: 0.0478729 seconds
time (
 prs = for i in V list (
    P := toList parents(G, i);
    if #P == 0 then 1 else det submatrix(S, P, P)
 );
  J = ideal for ij in toList(allE-set(edges G)) list (
    P := toList parents(G, ij#1);
    det submatrix(S, {ij#0}|P, {ij#1}|P)
 ):
  I2 = fold(saturate, J, prs);
);
```


I1 == I2 --> true

Examples: The Verma constraint

Examples: The Verma constraint

$$\begin{split} \omega_{11} &= |\Sigma_{1}|, \ \omega_{22} = \frac{|\Sigma_{12}|}{|\Sigma_{1}|}, \ \omega_{33} = \frac{|\Sigma_{123}|}{|\Sigma_{12}|}, \ \omega_{44} = \frac{|\Sigma_{1234}|}{|\Sigma_{123}|} + \frac{|\Sigma_{12}||\Sigma_{24|13}|^{2}}{|\Sigma_{1}||\Sigma_{123}|^{2}}, \\ \omega_{24} &= \frac{|\Sigma_{12}||\Sigma_{24|13}|}{|\Sigma_{1}||\Sigma_{123}|}, \ \lambda_{12} = \frac{|\Sigma_{12}|\emptyset|}{|\Sigma_{1}|}, \ \lambda_{13} = \frac{|\Sigma_{13}|_{2}|}{|\Sigma_{12}|}, \ \lambda_{23} = \frac{|\Sigma_{23}|_{1}|}{|\Sigma_{12}|}, \ \lambda_{34} = \frac{|\Sigma_{34}|_{12}|}{|\Sigma_{123}|}, \\ \lambda_{14} &= \frac{|\Sigma_{1}||\Sigma_{14|23}| + |\Sigma_{12}|\emptyset||\Sigma_{24|13}|}{|\Sigma_{1}||\Sigma_{123}|} \end{split}$$

► Can also compute vanishing ideals for Lyapunov models, e.g. $1 \rightarrow 2 \rightarrow 3$:

$$\sigma_{11}\sigma_{12}^2\sigma_{13}\sigma_{22} - \sigma_{11}^2\sigma_{13}\sigma_{22}^2 - \sigma_{11}\sigma_{12}^3\sigma_{23} + \sigma_{11}\sigma_{12}\sigma_{13}^2\sigma_{23} + \sigma_{11}^2\sigma_{12}\sigma_{22}\sigma_{23} + \sigma_{12}\sigma_{13}\sigma_{22}\sigma_{23} - \sigma_{11}^2\sigma_{13}\sigma_{23}^2 - 2\sigma_{12}^2\sigma_{13}\sigma_{23}^2 + \sigma_{11}\sigma_{13}\sigma_{22}\sigma_{23}^2 - \sigma_{11}\sigma_{12}^2\sigma_{13}\sigma_{33} - \sigma_{11}\sigma_{13}\sigma_{22}^2\sigma_{33} + \sigma_{11}^2\sigma_{12}\sigma_{23}\sigma_{33} + \sigma_{12}^3\sigma_{23}\sigma_{33} = 0.$$

▶ Can also compute vanishing ideals for Lyapunov models, e.g. $1 \rightarrow 2 \rightarrow 3$:

$$\begin{split} \sigma_{11}\sigma_{12}^2\sigma_{13}\sigma_{22} &- \sigma_{11}^2\sigma_{13}\sigma_{22}^2 - \sigma_{11}\sigma_{12}^3\sigma_{23} + \sigma_{11}\sigma_{12}\sigma_{13}^2\sigma_{23} + \sigma_{11}^2\sigma_{12}\sigma_{22}\sigma_{23} + \\ \sigma_{12}\sigma_{13}^2\sigma_{22}\sigma_{23} - \sigma_{11}^2\sigma_{13}\sigma_{23}^2 - 2\sigma_{12}^2\sigma_{13}\sigma_{23}^2 + \sigma_{11}\sigma_{13}\sigma_{22}\sigma_{23}^2 - \sigma_{11}\sigma_{12}^2\sigma_{13}\sigma_{33} - \\ \sigma_{11}\sigma_{13}\sigma_{22}^2\sigma_{33} + \sigma_{11}^2\sigma_{12}\sigma_{23}\sigma_{33} + \sigma_{12}^3\sigma_{23}\sigma_{33} = 0. \end{split}$$

► This irreducible quintic specializes to $\sigma_{13} = \sigma_{12}\sigma_{23}$ when $\sigma_{11} = \sigma_{22} = \sigma_{33} = 1$ which also happens to cut out the Bayesian network model of $1 \longrightarrow 2 \longrightarrow 3 \dots$

▶ Can also compute vanishing ideals for Lyapunov models, e.g. $1 \rightarrow 2 \rightarrow 3$:

$$\begin{split} \sigma_{11}\sigma_{12}^2\sigma_{13}\sigma_{22} &- \sigma_{11}^2\sigma_{13}\sigma_{22}^2 - \sigma_{11}\sigma_{12}^3\sigma_{23} + \sigma_{11}\sigma_{12}\sigma_{13}^2\sigma_{23} + \sigma_{11}^2\sigma_{12}\sigma_{22}\sigma_{23} + \\ \sigma_{12}\sigma_{13}^2\sigma_{22}\sigma_{23} - \sigma_{11}^2\sigma_{13}\sigma_{23}^2 - 2\sigma_{12}^2\sigma_{13}\sigma_{23}^2 + \sigma_{11}\sigma_{13}\sigma_{22}\sigma_{23}^2 - \sigma_{11}\sigma_{12}^2\sigma_{13}\sigma_{33} - \\ \sigma_{11}\sigma_{13}\sigma_{22}^2\sigma_{33} + \sigma_{11}^2\sigma_{12}\sigma_{23}\sigma_{33} + \sigma_{12}^3\sigma_{23}\sigma_{33} = 0. \end{split}$$

- ► This irreducible quintic specializes to $\sigma_{13} = \sigma_{12}\sigma_{23}$ when $\sigma_{11} = \sigma_{22} = \sigma_{33} = 1$ which also happens to cut out the Bayesian network model of $1 \longrightarrow 2 \longrightarrow 3 \dots$
- ▶ Model constraints are **not** just conditional independence [BDHLMS25].

▶ Can also compute vanishing ideals for Lyapunov models, e.g. $1 \rightarrow 2 \rightarrow 3$:

$$\begin{split} \sigma_{11}\sigma_{12}^2\sigma_{13}\sigma_{22} &- \sigma_{11}^2\sigma_{13}\sigma_{22}^2 - \sigma_{11}\sigma_{12}^3\sigma_{23} + \sigma_{11}\sigma_{12}\sigma_{13}^2\sigma_{23} + \sigma_{11}^2\sigma_{12}\sigma_{22}\sigma_{23} + \\ \sigma_{12}\sigma_{13}^2\sigma_{22}\sigma_{23} - \sigma_{11}^2\sigma_{13}\sigma_{23}^2 - 2\sigma_{12}^2\sigma_{13}\sigma_{23}^2 + \sigma_{11}\sigma_{13}\sigma_{22}\sigma_{23}^2 - \sigma_{11}\sigma_{12}^2\sigma_{13}\sigma_{33} - \\ \sigma_{11}\sigma_{13}\sigma_{22}^2\sigma_{33} + \sigma_{11}^2\sigma_{12}\sigma_{23}\sigma_{33} + \sigma_{12}^3\sigma_{23}\sigma_{33} = 0. \end{split}$$

- ► This irreducible quintic specializes to $\sigma_{13} = \sigma_{12}\sigma_{23}$ when $\sigma_{11} = \sigma_{22} = \sigma_{33} = 1$ which also happens to cut out the Bayesian network model of $1 \longrightarrow 2 \longrightarrow 3...$
- ▶ Model constraints are **not** just conditional independence [BDHLMS25].

A combinatorial "separation" criterion is not yet known.

An edge-colored Lyapunov model

References

[BDHLMS25]	Tobias Boege, Mathias Drton, Benjamin Hollering, Sarah Lumpp, Pratik Misra, and Daniela Schkoda. "Conditional independence in stationary diffusions". In: <i>Stochastic Processes and their Applications</i> (2025). DOI: 10.1016/j.spa.2025.104604.
[BKMS24]	Tobias Boege, Kaie Kubjas, Pratik Misra, and Liam Solus. <i>Colored Gaussian DAG models</i> . 2024. arXiv: 2404.04024 [math.ST].
[BS24]	Tobias Boege and Liam Solus. Real birational implicitization for statistical models. 2024. arXiv: 2410.23102 [math.ST].
[DG20]	Eliana Duarte and Christiane Görgen. "Equations defining probability tree models". In: J. Symb. Comput. 99 (2020), pp. 127–146. DOI: 10.1016/j.jsc.2019.04.001.
[GMS06]	Dan Geiger, Christopher Meek, and Bernd Sturmfels. "On the toric algebra of graphical models". In: Ann. Stat. 34.3 (2006), pp. 1463–1492. DOI: 10.1214/00905360600000263.
[Sul08]	Seth Sullivant. "Algebraic geometry of Gaussian Bayesian networks". In: Adv. Appl. Math. 40.4 (2008), pp. 482–513. DOI: 10.1016/j.aam.2007.04.004.