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Conditional independence

▶ N fixed finite ground set indexing jointly distributed random variables.

▶ Identify i ∈ N with {i} ⊆ N and for I , J ⊆ N abbreviate IJ = I ∪ J.

▶ Conditional independence for I , J,K ⊆ N disjoint:

[I ⊥⊥ J | K ] ⇐⇒ vanishing of conditional mutual information.

▶ The CI symbols are symmetric [I ⊥⊥ J | K ] ⇐⇒ [J ⊥⊥ I | K ].

▶ A set S of CI symbols is a semigraphoid if it satisfies

[I ⊥⊥ JK | L] ⇐⇒ [I ⊥⊥ J | L] ∧ [I ⊥⊥ K | JL]

⇐⇒ [I ⊥⊥ K | L] ∧ [I ⊥⊥ J | KL]

▶ E.g., conditional independence relation of every system of random variables.
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Partial converses of the semigraphoid property

[I ⊥⊥ JK | L] =⇒

{
1 [I ⊥⊥ J | L] ∧ 2 [I ⊥⊥ J | KL] ∧
3 [I ⊥⊥ K | L] ∧ 4 [I ⊥⊥ K | JL]

▶ 1 ∧ 4 and 2 ∧ 3 are sufficient for [I ⊥⊥ JK | L] by semigraphoid axioms.

▶ Intersection property: 2 ∧ 4 =⇒ [I ⊥⊥ JK | L].

▶ Composition property: 1 ∧ 3 =⇒ [I ⊥⊥ JK | L].

▶ Let’s ignore 1 ∧ 2 and 3 ∧ 4 today . . .

Modulo the semigraphoid axioms Intersection and Composition are logical converses:

Intersection 2 ∧ 4 =⇒ 1 ∧ 3

Composition 2 ∧ 4 ⇐= 1 ∧ 3
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Intersection, Composition and duality

Goal: find sufficient conditions on the distribution
which ensure Intersection or Composition.

▶ Intersection has received lots of attention. Composition not so much.

▶ Recent interest in Composition comes from machine learning. [AAZ22]

▶ Curiously they are dual to each other via [I ⊥⊥ J | K ]∗ := [I ⊥⊥ J | N \ IJK ]:

Intersection [I ⊥⊥ J | KL] ∧ [I ⊥⊥ K | JL] =⇒ [I ⊥⊥ J | L] ∧ [I ⊥⊥ K | L]

↓ use  L = N \ IJKL

Intersection∗ [I ⊥⊥ J |  L] ∧ [I ⊥⊥ K |  L] =⇒ [I ⊥⊥ J | K  L] ∧ [I ⊥⊥ K | J  L]

but this is Composition with L replaced by  L.
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Examples

▶ The conditional independence structures of jointly regular Gaussian random
variables satisfy Intersection and Composition.

Studený’s question [Stu05, p. 191]

Is every conditional independence relation on regular Gaussians also realizable by
discrete (or even binary) random variables?

▶ Various types of graphical models satisfy Intersection and Composition.
Proofs are combinatorial or reduce to properties of Gaussians.

▶ d-separation, u-separation, m-separation, ∗-separation, . . .

▶ Positive distributions satisfy Intersection.

▶ MTP2 distributions satisfy Composition.
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Non-example: matroids

▶ Let r : 2N → Z be a matroid. The set of modular pairs of r is a semigraphoid:

S (r) := { [I ⊥⊥ J | K ] : r(IK ) + r(JK ) = r(IJK ) + r(K ) }.

Lemma

If S satisfies Composition and [i ⊥⊥ j ] for all i ̸= j then S is totally independent.

▶ If r is a simple matroid then S (r) satisfies Composition if and only if r is uniform.

Lemma∗

If S satisfies Intersection and [i ⊥⊥ j | N \ ij ] for all i ̸= j then S is totally independent.

▶ If r is a co-simple matroid then S (r) satisfies Intersection if and only if r is zero.
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Intersection for three binary random variables

[I ⊥⊥ J | KL] ∧ [I ⊥⊥ K | JL] =⇒ [I ⊥⊥ J | L] ∧ [I ⊥⊥ K | L]

▶ By marginalizing to IJKL, conditioning on L and viewing I , J,K as single random
variables, we can reduce one instance of Intersection to the trivariate case.

needsPackage "GraphicalModels";

R = markovRing(3:2);

I = conditionalIndependenceIdeal(R, {{{1},{2},{3}}, {{1},{3},{2}}});

J = conditionalIndependenceIdeal(R, {{{1},{2,3},{}}});

decompose(I:J)

⟨p110, p101, p010, p001⟩ ∩ ⟨p111, p100, p011, p000⟩

▶ Failure of Intersection only on the boundary. Full support implies Intersection.
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The characteristic bipartite graph

▶ Let i , j , k be discrete random variables taking ri , rj , rk states, respectively.

▶ The characteristic bipartite graph G (j , k) is the bipartite graph on [rj ] ⊔ [rk ]
with an edge y−z whenever Pr[j = y , k = z ] > 0.

▶ If [i ⊥⊥ j | k] and [i ⊥⊥ k | j ] hold, then G (j , k) is admissible: all its connected
components are Kp,q for p, q ≥ 1.

Theorem (Cartwright–Engström conjecture & Fink’s theorem [Fin11])

The conditional independence model M ([i ⊥⊥ j | k] ∧ [i ⊥⊥ k | j ]) decomposes into
irreducible components, one for each admissible bipartite graph on [rj ] ⊔ [rk ].
Only the component corresponding to Krj ,rk is fully contained in M ([i ⊥⊥ jk]).

▶ Hence, G (j , k) being connected is sufficient for (one instance of) Intersection.
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The common information criterion

▶ G (j , k) was already used by Gács and Körner [GK73]:

▶ Let C be the set of connected components of G (j , k) and let g be a
function of jk with values in C such that g(y , z) = C whenever y , z ∈ C .

▶ g realizes the Gács–Körner common information of j and k .

Theorem

If [i ⊥⊥ j | k] and [i ⊥⊥ k | j ], then [i ⊥⊥ jk | g ]. Hence, if G (j , k) is connected,
g is constant and therefore [i ⊥⊥ jk] is implied.

▶ The same criterion has been reached independently by Florens, Mouchart, Rolin
and San Mart́ın as well as Dawid in the language of σ-algebras and measurable
separability. See the historical account in [MMR05].

▶ Also found by followers of Cartwright and Engström [KRS19].

▶ Also known as the Double Markov property [CK11, Exercise 16.25].
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The conditional Ingleton criterion

▶ The common information criterion involves an auxiliary variable g .

▶ All relations among four discrete random variables in terms of conditional
independence follow from conditional Ingleton inequalities [Stu21].

Theorem

The following is an essentially conditional information inequality:

[i ⊥⊥ j | k] ∧ [i ⊥⊥ k | j ] =⇒ Ingl(i : g | j : k) ≥ 0.

It implies the conditional independence rule

[i ⊥⊥ j | k] ∧ [i ⊥⊥ k | j ] ∧ [j ⊥⊥ k | g ] ∧ [i ⊥⊥ g ] =⇒ [i ⊥⊥ jk].

▶ What is necessary to construct such a g à la Gács–Körner?
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Conditional Ingleton vs. Gács–Körner

It is not difficult to parametrize binary distributions which satisfy the conditional
Ingleton criterion but fail the common information criterion using Cylindrical
Algebraic Decomposition in Mathematica, e.g., having G (j , k) = {0−1, 1−0}.

i j k g Pr

0 0 1 1 1/4

0 1 0 0 1/4

1 0 1 1 1/4

1 1 0 0 1/4

▶ Note the functional dependencies g = k = 1 − j .

▶ Gács–Körner common information is maximal with H(G (j , k)) = log 2.

▶ Distribution on ijk is quasi-uniform and [i ⊥⊥ jk] holds.
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Composition for three binary random variables

[I ⊥⊥ J | L] ∧ [I ⊥⊥ K | L] =⇒ [I ⊥⊥ J | KL] ∧ [I ⊥⊥ K | JL]

needsPackage "GraphicalModels";

R = markovRing(3:2);

I = conditionalIndependenceIdeal(R, {{{1},{2},{}}, {{1},{3},{}}});

J = ideal(sum gens R);

decompose(I:J)

Theorem (Kirkup’s theorem [Kir07])

There is only one irreducible component of M ([i ⊥⊥ j ] ∧ [i ⊥⊥ k]) on which the
sum of all probabilities does not vanish.

▶ No graphs, no interesting boundary structure.

▶ There exist positive distributions violating Composition.
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Matúš’s criterion

▶ A distribution on N is tight if each i ∈ N functionally depends on N \ i .

Theorem ([Mat06])

The tight entropy profiles with [i ⊥⊥ j ] and [i ⊥⊥ k] are
described by a piecewise linear information inequality →

▶ If h is the entropy profile of ijk, tight and satisfies [i ⊥⊥ j ] and [i ⊥⊥ k], then

h(ijk) = h(ij) = h(ik) = h(jk) = h(i) + h(j) = h(i) + h(k).

If also [i ⊥⊥ jk] holds, then h(ijk) = h(i) + h(jk), hence h(i) = 0 and [j ⊥⊥ k].

▶ How to generalize away from the tightness constraints?
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Matúš’s criterion

▶ A distribution on N is tight if each i ∈ N functionally depends on N \ i .

Theorem ([Mat06])

The tight entropy profiles with [i ⊥⊥ j ] and [i ⊥⊥ k] are
described by a piecewise linear information inequality →

▶ If h is the entropy profile of ijk, tight and satisfies [i ⊥⊥ j ] and [i ⊥⊥ k], then

h(ijk) = h(ij) = h(ik) = h(jk) = h(i) + h(j) = h(i) + h(k).

If also [i ⊥⊥ jk] holds, then h(ijk) = h(i) + h(jk), hence h(i) = 0 and [j ⊥⊥ k].

▶ How to generalize away from the tightness constraints?



12 / 14
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Dual conditional Ingleton criterion

Theorem

The following is an essentially conditional information inequality:

[i ⊥⊥ j | g ] ∧ [i ⊥⊥ k | g ] =⇒ Ingl(j : k | i : g) ≥ 0.

It implies the conditional independence rule

[i ⊥⊥ j | g ] ∧ [i ⊥⊥ k | g ] ∧ [j ⊥⊥ k | i ] ∧ [i ⊥⊥ g | jk] =⇒ [i ⊥⊥ jk | g ].

▶ This is formally dual to the conditional Ingleton criterion for Intersection.

▶ The Composition property is obtained conditionally on g .

▶ How to use this? Any constructions of suitable g?
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The duality paradox

According to Šimeček’s database for four random variables [Šim06]:

▶ There are 1 098 probabilistically representable semigraphoids (up to permutation).

▶ 369 satisfy Intersection and 369 satisfy Composition (and 133 satisfy both).

▶ The definitions of Intersection and Composition properties are dual.

▶ Conditional Ingleton inequalities provide dual sufficient conditions.

▶ But the bijection between the two sets of size 369 is not duality:

{ [i ⊥⊥ g | j ], [i ⊥⊥ g | k], [i ⊥⊥ g | jk], [j ⊥⊥ k | i ], [j ⊥⊥ k | g ] } ✓ [Stu21, Ex. 4]

{ [i ⊥⊥ g | j ], [i ⊥⊥ g | k], [i ⊥⊥ g ], [j ⊥⊥ k | i ], [j ⊥⊥ k | g ] } ✗ [Stu21, (I:1)]

▶ Is there a (geometric / algebraic) relation between Intersection and
Composition on the level of distributions?
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